“Dexterous manipulation and control with volumetric muscles” by Lee, Yu, Park, Aanjaneya, Sifakis, et al. …

  • ©Seunghwan Lee, Ri Yu, Jungnam Park, Mridul Aanjaneya, Eftychios D. Sifakis, and Jehee Lee



Entry Number: 57

Session Title:

    Virtually Human


    Dexterous manipulation and control with volumetric muscles




    We propose a framework for simulation and control of the human musculoskeletal system, capable of reproducing realistic animations of dexterous activities with high-level coordination. We present the first controllable system in this class that incorporates volumetric muscle actuators, tightly coupled with the motion controller, in enhancement of line-segment approximations that prior art is overwhelmingly restricted to. The theoretical framework put forth by our methodology computes all the necessary Jacobians for control, even with the drastically increased dimensionality of the state descriptors associated with three-dimensional, volumetric muscles. The direct coupling of volumetric actuators in the controller allows us to model muscular deficiencies that manifest in shape and geometry, in ways that cannot be captured with line-segment approximations. Our controller is coupled with a trajectory optimization framework, and its efficacy is demonstrated in complex motion tasks such as juggling, and weightlifting sequences with variable anatomic parameters and interaction constraints.


    1. Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective dynamics: fusing constraint projections for fast simulation. ACM Transactions on Graphics 33, 4, Article 154 (2014). Google ScholarDigital Library
    2. Robert Bridson, Sebastian. Marino, and Ron Fedkiw. 2003. Simulation of Clothing with Folds and Wrinkles. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 28–36. Google ScholarDigital Library
    3. Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. 2002. Interactive Skeleton-driven Dynamic Deformations. ACM Transactions on Graphics 21, 3 (2002), 586–593. Google ScholarDigital Library
    4. Stelian Coros, Sebastian Martin, Bernhard Thomaszewski, Christian Schumacher, Robert Sumner, and Markus Gross. 2012. Deformable objects alive! ACM Transactions on Graphics 31, 4, Article 69 (2012). Google ScholarDigital Library
    5. Ana Lucia Cruz Ruiz, Charles Pontonnier, Nicolas Pronost, and Georges Dumont. 2017. Muscle-Based Control for Character Animation. Computer Graphics Forum 36, 6 (2017), 122–147. Google ScholarDigital Library
    6. Michael Damsgaard, John Rasmussen, SÃÿren T. Christensen, Egidijus Surma, and Mark D. Zee. 2006. Analysis of musculoskeletal systems in the AnyBody Modeling System. Simulation Modelling Practice and Theory 14, 8 (2006), 1100 — 1111.Google ScholarCross Ref
    7. Scott L. Delp, Frank C. Anderson, Anderson S. Arnold, Peter Loan, Ayman Habib, T. John, Eran Guendelman, and Darryl G. Thelen. 2007. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Transactions on Biomedical Engineering 54, 11 (2007), 1940–1950.Google ScholarCross Ref
    8. Ye Fan, Joshua Litven, and Dinesh K Pai. 2014. Active volumetric musculoskeletal systems. ACM Transactions on Graphics 33, 4, Article 152 (2014). Google ScholarDigital Library
    9. François Faure, Christian Duriez, Hervé Delingette, Jérémie Allard, Benjamin Gilles, Stéphanie Marchesseau, Hugo Talbot, Hadrien Courtecuisse, Guillaume Bousquet, Igor Peterlik, and Stéphane Cotin. 2012. SOFA: A Multi-Model Framework for Interactive Physical Simulation. In Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. Studies in Mechanobiology, Tissue Engineering and Biomaterials, Vol. 11. 283–321.Google Scholar
    10. Thomas Geijtenbeek, Michiel van de Panne, and A. Frank van der Stappen. 2013. Flexible Muscle-based Locomotion for Bipedal Creatures. ACM Transactions on Graphics 32, 6, Article 206 (2013). Google ScholarDigital Library
    11. Alexandru-Eugen Ichim, Petr Kadleček, Ladislav Kavan, and Mark Pauly. 2017. Phace: physics-based face modeling and animation. ACM Transactions on Graphics 36, 4, Article 153 (2017). Google ScholarDigital Library
    12. Petr Kadleček, Alexandru-Eugen Ichim, Tiantian Liu, Jaroslav Křivánek, and Ladislav Kavan. 2016. Reconstructing personalized anatomical models for physics-based body animation. ACM Transactions on Graphics 35, 6, Article 213 (2016). Google ScholarDigital Library
    13. Meekyoung Kim, Gerard Pons-Moll, Sergi Pujades, Seungbae Bang, Jinwook Kim, Michael J. Black, and Sung-Hee Lee. 2017. Data-driven Physics for Human Soft Tissue Animation. ACM Transactions on Graphics 36, 4, Article 54 (2017), 54:1–54:12 pages. Google ScholarDigital Library
    14. Yeara Kozlov, Derek Bradley, Moritz Bächer, Bernhard Thomaszewski, Thabo Beeler, and Markus Gross. 2017. Enriching Facial Blendshape Rigs with Physical Simulation. Computer Graphics Forum 36, 2 (2017), 75–84. Google ScholarDigital Library
    15. Jeongseok Lee, Michael X. Grey, Sehoon Ha, Tobias Kunz, Sumit Jain, Yuting Ye, Siddhartha S. Srinivasa, Mike Stilman, and C. Karen Liu. 2018. DART: Dynamic Animation and Robotics Toolkit. The Journal of Open Source Software 3, 22 (2018), 500.Google ScholarCross Ref
    16. Sunghee Lee, Eftychios Sifakis, and Demetri Terzopoulos. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Transactions on Graphics 28, 4, Article 99 (2009). Google ScholarDigital Library
    17. Sung Hee Lee and Demetri Terzopoulos. 2006. Heads Up!: Biomechanical Modeling and Neuromuscular Control of the Neck. ACM Transactions on Graphics 25, 3 (2006), 1188–1198. Google ScholarDigital Library
    18. Yoonsang Lee, Kyungho Lee, Soon-Sun Kwon, Jiwon Jeong, Carol O’Sullivan, Moon Seok Park, and Jehee Lee. 2015. Push-Recovery Stability of Biped Locomotion. ACM Transactions on Graphics 34, 6 (2015). Google ScholarDigital Library
    19. Yoonsang Lee, Moon Seok Park, Taesoo Kwon, and Jehee Lee. 2014. Locomotion control for many-muscle humanoids. ACM Transactions on Graphics 33, 6, Article 218 (2014). Google ScholarDigital Library
    20. C. Karen Liu. 2008. Synthesis of Interactive Hand Manipulation. In Proceedings of the ACMSIGGRAPH/Eurographics Symposium on Computer Animation. 163–171. Google ScholarDigital Library
    21. Libin Liu, KangKang Yin, Bin Wang, and Baining Guo. 2013. Simulation and Control of Skeleton-driven Soft Body Characters. ACM Transactions on Graphics 32, 6, Article 215 (2013), 8 pages. Google ScholarDigital Library
    22. Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton Methods for Real-Time Simulation of Hyperplastic Materials. ACM Transactions on Graphics 36, 3, Article 23 (2017). Google ScholarDigital Library
    23. John E. Lloyd, Ian Stavness, and Sidney Fels. 2012. ARTISYNTH: a fast interactive biomechanical modeling toolkit combining multibody and finite element simulation. (2012).Google Scholar
    24. Richard Malgat, Benjamin Gilles, David IW Levin, Matthieu Nesme, and François Faure. 2015. Multifarious hierarchies of mechanical models for artist assigned levels-of-detail. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 27–36. Google ScholarDigital Library
    25. Nathan Mitchell, Mridul Aanjaneya, Rajsekhar Setaluri, and Eftychios Sifakis. 2015a. Non-manifold level sets: A multivalued implicit surface representation with applications to self-collision processing. ACM Transactions on Graphics 34, 6, Article 247 (2015). Google ScholarDigital Library
    26. Nathan Mitchell, Eftychios Sifakis, et al. 2015b. GRIDiron: An interactive authoring and cognitive training foundation for reconstructive plastic surgery procedures. ACM Transactions on Graphics 34, 4, Article 43 (2015). Google ScholarDigital Library
    27. Akihiko Murai, Q Youn Hong, Katsu Yamane, and Jessica K Hodgins. 2017. Dynamic skin deformation simulation using musculoskeletal model and soft tissue dynamics. Computational Visual Media 3, 1 (2017), 49–60.Google ScholarCross Ref
    28. Taylor Patterson, Nathan Mitchell, and Eftychios Sifakis. 2012. Simulation of complex nonlinear elastic bodies using lattice deformers. ACM Transactions on Graphics 31, 6, Article 197 (2012). Google ScholarDigital Library
    29. Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. 2017. Deeploco: Dynamic locomotion skills using hierarchical deep reinforcement learning. ACM Transactions on Graphics 36, 4, Article 41 (2017). Google ScholarDigital Library
    30. Burkard Polster. 2003. The Mathematics of Juggling.Google Scholar
    31. Gerard Pons-Moll, Javier Romero, Naureen Mahmood, and Michael J Black. 2015. Dyna: A model of dynamic human shape in motion. ACM Transactions on Graphics 34, 4, Article 120 (2015). Google ScholarDigital Library
    32. HJ Ralston. 1976. Energetics of human walking. In Neural control of locomotion. 77–98.Google Scholar
    33. Prashant Sachdeva, Shinjiro Sueda, Susanne Bradley, Mikhail Fain, and Dinesh K Pai. 2015. Biomechanical simulation and control of hands and tendinous systems. ACM Transactions on Graphics 34, 4, Article 42 (2015). Google ScholarDigital Library
    34. Shunsuke Saito, Zi-Ye Zhou, and Ladislav Kavan. 2015. Computational bodybuilding: Anatomically-based modeling of human bodies. ACM Transactions on Graphics 34, 4, Article 41 (2015). Google ScholarDigital Library
    35. Weiguang Si, Sung-Hee Lee, Eftychios Sifakis, and Demetri Terzopoulos. 2014. Realistic biomechanical simulation and control of human swimming. ACM Transactions on Graphics 34, 1, Article 10 (2014). Google ScholarDigital Library
    36. Eftychios Sifakis and Jernej Barbic. 2012. FEM simulation of3D deformable solids: a practitioner’s guide to theory, discretization and model reduction. In ACM SIGGRAPH 2012 Courses. 20. Google ScholarDigital Library
    37. Eftychios Sifakis, Igor Neverov, and Ronald Fedkiw. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Transactions on Graphics 24, 3 (2005). Google ScholarDigital Library
    38. Ian Stavness, Alan G Hannam, John E Lloyd, and Sidney Fels. 2010. Predicting muscle patterns for hemimandibulectomy models. (2010), 483–91.Google Scholar
    39. Julien Stelletta, Raphaël Dumas, and Yoann Lafon. 2017. Modeling of the thigh: a 3D deformable approach considering muscle interactions. In Biomechanics of Living Organs. 497–521.Google Scholar
    40. Shinjiro Sueda, Andrew Kaufman, and Dinesh K. Pai. 2008. Musculotendon Simulation for Hand Animation. ACM Transactions on Graphics 27, 3, Article 83 (2008), 8 pages. Google ScholarDigital Library
    41. Jie Tan, Greg Turk, and C Karen Liu. 2012. Soft body locomotion. ACM Transactions on Graphics 31, 4, Article 26 (2012). Google ScholarDigital Library
    42. Joseph Teran, Sylvia S Blemker, Victor Ng-Thow-Hing, and Ronald Fedkiw. 2003. Finite volume methods for the simulation of skeletal muscle. In Proceedings of the ACM SIGGRAPH/Eurographics symposium on Computer animation. 68–74. Google ScholarDigital Library
    43. Joseph Teran, Eftychios Sifakis, Silvia S Blemker, Victor Ng-Thow-Hing, Cynthia Lau, and Ronald Fedkiw. 2005a. Creating and simulating skeletal muscle from the visible human data set. IEEE Transactions on Visualization and Computer Graphics 11, 3 (2005), 317–328. Google ScholarDigital Library
    44. Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005b. Robust quasistatic finite elements and flesh simulation. In Proceedings of the ACM SIGGRAPH/Eurographics symposium on Computer animation. 181–190. Google ScholarDigital Library
    45. Darryl G Thelen et al. 2003. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. Transactions-American Society Of Mechanical Engineers Journal Of Biomechanical Engineering 125, 1 (2003), 70–77.Google ScholarCross Ref
    46. Andreas Wachter and Lorenz T. Biegler. 2006. On the Implementation of an Interior-point Filter Line-search Algorithm for Large-scale Nonlinear Programming. Math. Program. 106, 1 (2006), 25–57. Google ScholarDigital Library
    47. Jack M. Wang, Samuel R. Hamner, Scott L. Delp, and Vladlen Koltun. 2012. Optimizing Locomotion Controllers Using Biologically-based Actuators and Objectives. ACM Transactions on Graphics 31, 4, Article 25 (2012). Google ScholarDigital Library
    48. Jungdam Won, Jongho Park, Kwanyu Kim, and Jehee Lee. 2017. How to train your dragon: example-guided control of flapping flight. ACM Transactions on Graphics 36, 6, Article 198 (2017). Google ScholarDigital Library
    49. Hongyi Xu and Jernej Barbič. 2016. Pose-space Subspace Dynamics. ACM Transactions on Graphics 35, 4, Article 35 (2016), 14 pages. Google ScholarDigital Library
    50. Felix E Zajac. 1989. Muscle and tendon Properties models scaling and application to biomechanics and motor. Critical reviews in biomedical engineering 17, 4 (1989), 359–411.Google Scholar
    51. Lifeng Zhu, Xiaoyan Hu, and Ladislav Kavan. 2015. Adaptable anatomical models for realistic bone motion reconstruction. Computer Graphics Forum 34, 2 (2015), 459–471. Google ScholarDigital Library

ACM Digital Library Publication: