“Development models of herbaceous plants for computer imagery purposes” by Prusinkiewicz, Lindenmayer and Hanan
Conference:
Type(s):
Title:
- Development models of herbaceous plants for computer imagery purposes
Presenter(s)/Author(s):
Abstract:
In this paper we present a method for modeling herbaceous plants, suitable for generating realistic plant images and animating developmental processes. The idea is to achieve realism by simulating mechanisms which control plant growth in nature. The developmental approach to the modeling of plant architecture is extended to the modeling of leaves and flowers. The method is expressed using the formalism of L-systems.
References:
1. Abelson, H., and diSessa, A. A. Turtle geometry. M.I.T. Press, Cambridge (1982).
2. Aono, M., and Kunii, T. L. Botanical tree image generation. IEEE Computer Graphics and Applications 4, 5 (1984), 10-34.
3. Aono, M., and Kunii, T. L. Botanical tree image generation. {Video tape}, IBM, Tokyo (1985).
4. Armstrong, W. W. The dynamics of tree linkages with a fixed root link and limited range of rotation. Actes du Colloque laternationale rlmaginaire Numrique ’86 (1986), 16-21.
5. Baker, R., and Herman, G. T. Simulation of organisms using a developmental model, Parts I and II. Int. J. of Bio-Medical Computing 3 (1972), 201-215 and 251-267.
6. Beyer, T., and Friedell, M. Generative scene modelling. Proceedings of EUROGRAPHICS ’87 (1987), 151-158 and 57I.
7. Bloomenthal, J. Modeling the Mighty Maple. Proceedings of SIG- GRAPH ’85 (San Francisco, CA, 1uly 22-26, 1985). In Computer Graphics 19, 3 (1985), 305-311.
8. Eiehhorst, P., and Savitch, W. I. Growth functions of stochastic Lindenmayer systems. Inf. and Control 45 (1980), 217-228.
9. Erickson, R. O. The geometry of phyllotaxis. In J. E. Dale and F. L. Milthrope (Eds.): The growth and functioning of leaves, Cambridge University Press (1983), 53-88.
10. Eyrolles, G. Synth~se d’images figuratives d’arbres par des m~thodes combinatoires. Ph.D. Thesis, Universit~ de Bordeaux I (1986).
11. Frijters, D., and Lindenmayer, A. A model for the growth and flowering of Aster novae-angliae on the basis of table (1, 0) L- systems. In G. Rozenberg and A. Salomaa (Eds.): L Systems, Lecture Notes in Computer Science 15, Springer-Verlag, Berlin (1974), 24-52.
12. Frijters, D., and Lindenmayer, A. Developmental descriptions of branching patterns with paracladial relationships. In A. Lindenmayer and G. Rozenberg (Eds.): Automata, languages, development, North-Holland, Amsterdam (1976), 57-73.
13. Frijters, D. Principles of simulation of inflorescence development. Annals of Botany 42 (1978), 549-560.
14. Frijters, D. Mechanisms of developmental integration of Aster novae-angliae L., and Hieracium murorum L. Annals of Botany 42 (1978), 561-575.
15. Habel, A., and Kreowski, H.-J. On context-free graph languages generated by edge replacement. In H. Ehrig, et al. (Eds.): Graph grammars and their application to computer science; Second Int. Workshop, Lecture Notes in Computer Science 153, Springer- Verlag, Berlin (1983), 143-158.
16. Hall~, F., Oldeman, R., and Tomlinson, P. Tropical trees and forests: an architectural analysis. Springer-Verlag, Berlin (1978).
17. Herman, G. T., and Liu, W. H. The daughter of CELIA, the French flag, and the firing squad. Simulation 21 (1973), 33-41.
18. Herman, G. T., and Rozenberg, G. Developmental systems and languages. North-Holland, Amsterdam (1975).
19. Hogeweg, P., and Hesper, B. A model study on biomorphological description. Pattern Recognition 6 (1974), 165-179.
20. Janssen, J. M., and Lindenmayer, A. Models for the control of branch positions and flowering sequences of capitula in Mycelis muralis (L.) Dumont (Compositae). New Phytologist 105 (1987), 191-220.
21. Kawaguchi, Y. A morphological study of the form of nature. Proceedings of SIGGRAPH ’82 (July 1982). In Computer Graphics 16, 3 (1982), 223-232.
22. Lienhardt, P. Modelisation et ~volution de surfaces libres. Ph.D. Thesis, Universit~ Louis Pasteur, Strasbourg (1987).
23. Lienhardt, P., and Francon, J. Synth~se d’images de feuilles v~g~tales. Technical Report R-87-1, D~partement d’informatique, Universit~ Louis Pasteur, Strasbourg (1987).
24. Lindenmayer, A. Mathematical models for cellular interaction in development, Parts I and II. J. Theor. Biol. 18 (1968), 280-315.
25. Lindenmayer, A. Positional and temporal control mechanisms in inflorescence development. In P. W. Barlow and D. J. Carr (Eds.): Positional controls in plant development, Cambridge University Press (1984).
26. Lindenmayer, A. Models for multicellular development: characterization, inference and complexity of L-systems. In A. Kelmenov~ and L Kelmen (Eds.): Trends, techniques and problems in theoretical computer science. Lecture Notes in Computer Science 281, Springer-Verlag, Berlin (1987), 138-168.
27. Lindenmayer, A. An introduction to parallel map generating systems. In H. Ehrig, et al. (Eds.): Graph grammars and their application to computer science; Third Int. Workshop, Lecture Notes in Computer Science 291, Springer-Verlag, Berlin (1987), 27-40.
28. Lindenmayer, A., and Prusinkiewicz, P. Developmental models of multi-cellular organisms: A computer graphics perspective. Paper submitted to the Proceedings of the ArtOicial Life Workshop held in Los Alames, NM, September 1987,
29. M~ller-Doblies D., and U. Cautious improvement of a descriptive terminology of inflorescences. Monocot newsletter 4, Institut f~r Biologic, Technical University of Berlin (West), 13 (1987).
30. Nishida, T. KOL-systems simulating almost but not exactly the same development – the case of Japanese cypress. Memoirs Fac. Sci., Kyoto University, Ser. Bio. 8 (1980), 97-122.
31. Oppenheimer, P. Real time design and animation of fractal plants and trees. Proceedings of SIGGRAPH “86 (Dallas, Texas, August 18-22, 1985). In Computer Graphics 20, 4 (1986), 55-64.
32. Preparata F. P., and Yeh, R. T. Introduction to discrete structures. Addison-Wesley, Reading (1973).
33. Prusinkiewicz, P. Graphical applications of L-systems. Proc. of Graphics Interface ’86 – Vision Interface ’86 (1986), 247-253.
34. Prusinklewicz, P. Applications of L-systems to computer imagery. In H. Ehrlg, et al. (Eds.): Graph grammars and their application to computer science; Third Int. Workshop, Lecture Notes in Computer Science 291, Springer-Verlag, Berlin (1987), 534-548.
35. Prusinkiewicz, P., and Hanan, J. Lindenmayer systems, fractals, and plants. In D. Sanpe (Ed.): Fractals: Introduction, basics and applications. {Course notes} SIGGRAPH ’88 (Atlanta, Georgia, August 1-5, 1988).
36. Reeves, W. T., and Blau, R. Approximate and probabilistic algorithms for shading and rendering structured particle systems. Proceedings of SIGGRAPH ’85 (San Francisco, CA, July 22-26, 1985). In Computer Graphics 19, 3 (1985), 313-322.
37. Robinson, D. F. A symbolic notation for the growth of inflorescences. New Phytologist 103 (1986), 587-596.
38. Rozenberg, G., and Salomaa, A. The mathematical theory of L- systems. Academic Press, New York (1980).
39. Smith, A. R. About the cover: “Reconfigurable machines”. Computer 11, 7 (1978), 3-4.
40. Smith, A. R. Plants, fractals, and formal languages. Proceedings of SIGGRAPH ’84 (Minneapolis, Minnesota, July 23-27, 1984). Computer Graphics 18, 3 (1984), 1-10.
41. Smith, A. R. Grammars for generating the complexity of reality. {Video tape}, Lucasfilm/PIXAR, San Rafael (1985).
42. Stevens, P. S. Patterns in nature. Little, Brown and Co., Boston (1974).
43. Szilard, A. L., and Quinton, R. E. An interpretation for DOL systems by computer graphics. The Science Terrapin 4 (1979), 8-13.
44. Thompson, d’Arcy. On growth and form. University Press. Cambridge (1952).
45. Troll, W. Die Infloreszenzen, Vol. I. Gustav Fischer Verlag, Stuttgart (1964).
46. Yokomori, T. Stochastic characterizations of EOL languages. Information and Control 45 (1980), 26-33.
47. Zimmerman, M. H., and Brown, C. L. Trees – structure and function. Springer-Verlag, Berlin (1971).