“Detail preserving continuum simulation of straight hair” by McAdams, Selle, Ward, Sifakis and Teran

  • ©Aleka McAdams, Andrew Selle, Kelly Ward, Eftychios D. Sifakis, and Joseph Teran

Conference:


Type:


Title:

    Detail preserving continuum simulation of straight hair

Presenter(s)/Author(s):



Abstract:


    Hair simulation remains one of the most challenging aspects of creating virtual characters. Most research focuses on handling the massive geometric complexity of hundreds of thousands of interacting hairs. This is accomplished either by using brute force simulation or by reducing degrees of freedom with guide hairs. This paper presents a hybrid Eulerian/Lagrangian approach to handling both self and body collisions with hair efficiently while still maintaining detail. Bulk interactions and hair volume preservation is handled efficiently and effectively with a FLIP based fluid solver while intricate hair-hair interaction is handled with Lagrangian self-collisions. Thus the method has the efficiency of continuum/guide based hair models with the high detail of Lagrangian self-collision approaches.

References:


    1. Anjyo, K., Usami, Y., and Kurihara, T. 1992. A simple method for extracting the natural beauty of hair. In Comp. Graph. (Proc. SIGGRAPH 1992), ACM, vol. 26, 111–120. Google ScholarDigital Library
    2. Bando, Y., Chen, B.-Y., and Nishita, T. 2003. Animating hair with loosely connected particles. In Comp. Graph. Forum (Eurographics Proc.), 411–418.Google Scholar
    3. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. 2008. Discrete elastic rods. ACM Trans. on Graph. 27, 3, 1–12. Google ScholarDigital Library
    4. Bertails, F., Kim, T.-Y., Cani, M.-P., and Neumann, U. 2003. Adaptive wisp tree – a multiresolution control structure for simulating dynamics clustering in hair motion. ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 207–213. Google ScholarDigital Library
    5. Bertails, F., Ménier, C., and Cani, M.-P. 2005. A practical self-shadowing algorithm for interactive hair animation. In Graph. Interface, 71–78. Google ScholarDigital Library
    6. Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., and Lévêque, J.-L. 2006. Super-helices for predicting the dynamics of natural hair. ACM Trans. on Graph. 25, 3, 1180–1187. Google ScholarDigital Library
    7. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. In Proc. of SIGGRAPH 2002, ACM, vol. 21, 594–603. Google ScholarDigital Library
    8. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 28–36. Google ScholarDigital Library
    9. Brown, J., Latombe, J.-C., and Montgomery, K. 2004. Real-time knot-tying simulation. Vis. Comput. 20, 2, 165–179. Google ScholarDigital Library
    10. Carlson, M., Mucha, P., Van Horn, R., and Turk, G. 2002. Melting and flowing. In Proc. of the ACM SIGGRAPH Symp. on Comput. Anim., vol. 21, 167–174. Google ScholarDigital Library
    11. Chang, J., Jin, J., and Yu, Y. 2002. A practical model for hair mutual interactions. In ACM SIGGRAPH/Eurographics Symp. on Comp. Anim., 73–80. Google ScholarDigital Library
    12. Choe, B., and Ko, H.-S. 2005. A statistical wisp model and pseudophysical approaches for interactive hairstyle generation. IEEE Trans. on Vis. and Comput. Graph. 11, 2, 160–170. Google ScholarDigital Library
    13. Choe, B., Choi, M., and Ko, H.-S. 2005. Simulating complex hair with robust collision handling. In Proc. of ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 153–160. Google ScholarDigital Library
    14. Chorin, A. 1967. A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–26.Google ScholarCross Ref
    15. Grégoire, M., and Schömer, E. 2006. Interactive simulation of one-dimensional flexible parts. In Symp. on Solid and Physical Modeling, 95–103. Google ScholarDigital Library
    16. Gupta, R., Montagnoo, M., Volino, P., and Magnenat-Thalmann, N. 2006. Optimized framework for real time hair simulation. In CGI Proc. 2006, 702–710. Google ScholarDigital Library
    17. Hadap, S., and Magnenat-Thalmann, N. 2001. Modeling dynamic hair as a continuum. In Comp. Graph. Forum (Eurographics Proc.), 329–338.Google Scholar
    18. Hadap, S. 2006. Oriented strands: dynamics of stiff multibody system. In SCA ’06: Proc. of the 2006 ACM SIGGRAPH/Eurographics Symp. on Comput. anim., 91–100. Google ScholarDigital Library
    19. Harmon, D., Vouga, E., Tamstorf, R., and Grinspun, E. 2008. Robust treatment of simultaneous collisions. ACM Trans. on Graph. 27, 3, 1–4. Google ScholarDigital Library
    20. Kim, T.-Y., and Neumann, U. 2002. Interactive multiresolution hair modeling and editing. In Proc. of SIGGRAPH 2002, ACM, vol. 21, 620–629. Google ScholarDigital Library
    21. Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R., 2008. Two-way coupled SPH and particle level set fluid simulation.Google Scholar
    22. Moon, J. T., Walter, B., and Marschner, S. 2008. Efficient multiple scattering in hair using spherical harmonics. ACM Trans. Graph. 27, 3, 1–7. Google ScholarDigital Library
    23. Pai, D. K. 2002. Strands: Interactive simulation of thin solids using cosserat models. In Proc. of Eurographics, vol. 21 of Comput. Graph. Forum, Eurographics Assoc., 347–352.Google Scholar
    24. Petrovic, L., Henne, M., and Anderson, J. 2005. Volumetric methods for simulation and rendering of hair. Tech. rep., Pixar Animation Studios.Google Scholar
    25. Plante, E., Cani, M.-P., and Poulin, P. 2002. Capturing the complexity of hair motion. Graph. Models 64, 1, 40–58. Google ScholarDigital Library
    26. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 193–202. Google ScholarDigital Library
    27. Rosenblum, R. E., Carlson, W. E., and Tripp III, E. 1991. Simulating the structure and dynamics of human hair: modelling, rendering and animation. J. Vis. and Comput. Anim. 2, 4, 141–148.Google ScholarCross Ref
    28. Selle, A., Lentine, M., and Fedkiw, R. 2008. A mass spring model for hair simulation. ACM Trans. on Graph. 27, 3, 1–11. Google ScholarDigital Library
    29. Sifakis, E., Marino, S., and Teran, J. 2008. Globally coupled impulse-based collision handling for cloth simulation. In ACM SIGGRAPH/Eurographics Symp. on Comp. Anim.Google Scholar
    30. Spillmann, J., and Teschner, M. 2007. CoRDE: cosserat rod elements for the dynamic simulation of one-dimensional elastic object. In Proc. of ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 209–217. Google ScholarDigital Library
    31. Stam, J. 1999. Stable fluids. In Proc. of SIGGRAPH 1999, ACM, 121–128. Google ScholarDigital Library
    32. Ward, K., and Lin, M. C. 2003. Adaptive grouping and subdivision for simulating hair dynamics. In Pacific Graph., 234. Google ScholarDigital Library
    33. Ward, K., Lin, M. C., Lee, J., Fisher, S., and Macri, D. 2003. Modeling hair using level-of-detail representations. In Proc. of Comput. Anim. and Social Agents (CASA), 41. Google ScholarDigital Library
    34. Ward, K., Bertails, F., Kim, T.-Y., Marschner, S. R., Cani, M.-P., and Lin, M. C. 2007. A survey on hair modeling: Styling, simulation and rendering. IEEE Trans. on Vis. and Comput. Graph. 13, 2, 213–234. Google ScholarDigital Library
    35. Yu, Y. 2001. Modeling realistic virtual hairstyles. In Pacific Graph., 295–304. Google ScholarDigital Library
    36. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. on Graph. 24, 3, 965–972. Google ScholarDigital Library
    37. Zinke, A., Yuksel, C., Weber, A., and Keyser, J. 2008. Dual scattering approximation for fast multiple scattering in hair. ACM Trans. on Graph. 27, 3, 1–10. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: