“Deformable objects alive!” by Coros, Martin, Thomaszewski, Schumacher, Sumner, et al. …

  • ©Stelian Coros, Sebastian Martin, Bernhard Thomaszewski, Christian Schumacher, Robert W. Sumner, and Markus Gross


Abstract:


    We present a method for controlling the motions of active deformable characters. As an underlying principle, we require that all motions be driven by internal deformations. We achieve this by dynamically adapting rest shapes in order to induce deformations that, together with environment interactions, result in purposeful and physically-plausible motions. Rest shape adaptation is a powerful concept and we show that by restricting shapes to suitable subspaces, it is possible to explicitly control the motion styles of deformable characters. Our formulation is general and can be combined with arbitrary elastic models and locomotion controllers. We demonstrate the efficiency of our method by animating curve, shell, and solid-based characters whose motion repertoires range from simple hopping to complex walking behaviors.

References:


    1. Barbič, J., and Popović, J. 2008. Real-time control of physically based simulations using gentle forces. In Proc. of ACM SIGGRAPH Asia ’08. Google ScholarDigital Library
    2. Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. In Proc. of ACM SIGGRAPH ’09. Google ScholarDigital Library
    3. Bergou, M., Mathur, S., Wardetzky, M., and Grinspun, E. 2007. TRACKS: Toward Directable Thin Shells. In Proc. of ACM SIGGRAPH ’07. Google ScholarDigital Library
    4. Botsch, M., Pauly, M., Gross, M., and Kobbelt, L. 2006. PriMo: Coupled prisms for intuitive surface modeling. In Proc. of Symp. on Geometry Processing (SGP ’06). Google ScholarDigital Library
    5. Coros, S., Beaudoin, P., and van de Panne, M. 2010. Generalized biped walking control. In Proc. of ACM SIGGRAPH ’10. Google ScholarDigital Library
    6. de Lasa, M., Mordatch, I., and Hertzmann, A. 2010. Feature-based locomotion controllers. In Proc. of ACM SIGGRAPH ’10. Google ScholarDigital Library
    7. Fröhlich, S., and Botsch, M. 2011. Example-driven deformations based on discrete shells. Comput. Graph. Forum 30, 8, 2246–2257.Google ScholarCross Ref
    8. Girard, M., and Maciejewski, A. 1985. Computational modeling for the computer animation of legged figures. In Proc. of ACM SIGGRAPH ’85. Google ScholarDigital Library
    9. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proc. of ACM SIGGRAPH/Eurographics Symp. on Computer Animation (SCA ’03). Google ScholarDigital Library
    10. Hodgins, J., Wooten, W., Brogan, D., and O’Brien, J. 1995. Animating human athletics. In Proc. of ACM SIGGRAPH ’95. Google ScholarDigital Library
    11. Ijiri, T., Takayama, K., Yokota, H., and Igarashi, T. 2009. Procdef: Local-to-global deformation for skeleton-free character animation. In Proceedings of Pacific Graphics ’09.Google Scholar
    12. Irving, G., Schroeder, C., and Fedkiw, R. 2007. Volume conserving finite element simulations of deformable models. In Proc. of ACM SIGGRAPH ’07. Google ScholarDigital Library
    13. Jain, S., and Liu, C. K. 2011. Controlling physics-based characters using soft contacts. In Proc. of ACM SIGGRAPH Asia ’11. Google Scholar
    14. Jeon, H., and Choi, M.-H. 2007. Interactive motion control of deformable objects using localized optimal control. In IEEE International Conference on Robotics and Automation, 2582–2587.Google Scholar
    15. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. In Proc. of ACM SIGGRAPH ’07. Google ScholarDigital Library
    16. Kim, J., and Pollard, N. S. 2011. Fast simulation of skeleton-driven deformable body characters. ACM Trans. Graph. 30. Google ScholarDigital Library
    17. Lee, Y., Kim, S., and Lee, J. 2010. Data-driven biped control. In Proc. of ACM SIGGRAPH ’10. Google ScholarDigital Library
    18. Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. 2011. Example-based elastic materials. In Proc. of ACM SIGGRAPH ’11. Google ScholarDigital Library
    19. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. In Proc. of ACM SIGGRAPH ’04. Google ScholarDigital Library
    20. Nocedal, J., and Wright, S. J. 2000. Numerical Optimization. Springer.Google Scholar
    21. O’Brien, J., 2011. Thoughts on physically based animation. Keynote talk, Symposium on Computer Animation (SCA).Google Scholar
    22. Popović, J., Seitz, S. M., Erdmann, M., Popović, Z., and Witkin, A. 2000. Interactive manipulation of rigid body simulations. In Proc. of ACM SIGGRAPH ’00. Google ScholarDigital Library
    23. Raibert, M. H., and Hodgins, J. K. 1991. Animation of dynamic legged locomotion. In Proc. of ACM SIGGRAPH ’91. Google ScholarDigital Library
    24. Sueda, S., Kaufman, A., and Pai, D. K. 2008. Musculotendon simulation for hand animation. In Proc. of ACM SIGGRAPH ’08. Google ScholarDigital Library
    25. Tan, J., Gu, Y., Turk, G., and Liu, C. K. 2011. Articulated swimming creatures. In Proc. of ACM SIGGRAPH ’11. Google ScholarDigital Library
    26. Teran, J., Sifakis, E., Blemker, S. S., Ng-Thow-Hing, V., Lau, C., and Fedkiw, R. 2005. Creating and simulating skeletal muscle from the visible human data set. IEEE Transactions on Visualization and Computer Graphics 11, 317–328. Google ScholarDigital Library
    27. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proc. of ACM SIGGRAPH ’87. Google ScholarDigital Library
    28. Tu, X., and Terzopoulos, D. 1994. Artificial fishes: physics, locomotion, perception, behavior. In Proc. of ACM SIGGRAPH ’94. Google ScholarDigital Library
    29. Twigg, C. D., and James, D. L. 2007. Many-worlds browsing for control of multibody dynamics. In Proc. of ACM SIGGRAPH ’07. Google ScholarDigital Library
    30. Twigg, C. D., and Kačić-Alesić, Z. 2011. Optimization for sag-free simulations. In Proc. of ACM SIGGRAPH/Eurographics Symp. on Computer Animation (SCA ’11). Google ScholarDigital Library
    31. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O’Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. In Proc. of ACM SIGGRAPH ’10. Google ScholarDigital Library
    32. Winkler, T., Drieseberg, J., Alexa, M., and Hormann, K. 2010. Multi-scale geometry interpolation. In Proc. of Eurographics ’10.Google Scholar
    33. Wojtan, C., Mucha, P. J., and Turk, G. 2006. Keyframe control of complex particle systems using the adjoint method. In Proc. of ACM SIGGRAPH/Eurographics Symp. on Computer Animation (SCA ’06). Google ScholarDigital Library
    34. Wu, J.-c., and Popović, Z. 2003. Realistic modeling of bird flight animations. In Proc. of ACM SIGGRAPH ’03. Google ScholarDigital Library
    35. Wu, J., and Popović, Z. 2010. Terrain-adaptive bipedal locomotion control. In Proc. of ACM SIGGRAPH ’10. Google ScholarDigital Library
    36. Yin, K., Loken, K., and van de Panne, M. 2007. SIMBICON: Simple biped locomotion control. In Proc. of ACM SIGGRAPH ’07. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: