“Conformal mesh deformations with Möbius transformations”

  • ©Amir Vaxman, Christian Müller, and Ofir Weber




    Conformal mesh deformations with Möbius transformations

Session/Category Title: Simsquishal Geometry




    We establish a framework to design triangular and circular polygonal meshes by using face-based compatible Möbius transformations. Embracing the viewpoint of surfaces from circles, we characterize discrete conformality for such meshes, in which the invariants are circles, cross-ratios, and mutual intersection angles. Such transformations are important in practice for editing meshes without distortions or loss of details. In addition, they are of substantial theoretical interest in discrete differential geometry. Our framework allows for handle-based deformations, and interpolation between given meshes with controlled conformal error.


    1. Alexa, M., Cohen-Or, D., and Levin, D. 2000. As-rigid-as-possible shape interpolation. In Proc. SIGGRAPH, 157–164. Google ScholarDigital Library
    2. Ben-Chen, M., Gotsman, C., and Bunin, G. 2008. Conformal flattening by curvature prescription and metric scaling. Computer Graphics Forum 27, 2, 449–458.Google ScholarCross Ref
    3. Bobenko, A. I., and Schröder, P. 2005. Discrete Willmore flow. In Proc. SGP, 101–110. Google ScholarDigital Library
    4. Bobenko, A. I., and Springborn, B. A. 2004. Variational principles for circle patterns and Koebe’s theorem. Trans. Amer. Math. Soc 356, 659–689.Google ScholarCross Ref
    5. Bobenko, A. I., and Suris, Yu. S. 2008. Discrete differential geometry. consistency as integrability, vol. 98. Amer. Math. Soc.Google Scholar
    6. Bobenko, A. I., Hoffmann, T., and Springborn, B. A. 2006. Minimal surfaces from circle patterns: geometry from combinatorics. Ann. of Math. (2) 164, 1, 231–264.Google Scholar
    7. Bouaziz, S., Deuss, M., Schwartzburg, Y., Weise, T., and Pauly, M. 2012. Shape-up: Shaping discrete geometry with projections. Computer Graphics Forum 31, 5, 1657–1667. Google ScholarDigital Library
    8. Chen, R., Weber, O., Keren, D., and Ben-Chen, M. 2013. Planar shape interpolation with bounded distortion. ACM TOG 32, 4 (July), 108:1–12. Google ScholarDigital Library
    9. Crane, K., Pinkall, U., and Schröder, P. 2011. Spin transformations of discrete surfaces. ACM TOG 30, 4, 104:1–10. Google ScholarDigital Library
    10. Frenkel, I., and Libine, M. 2008. Quaternionic analysis, representation theory and physics. Adv. Math. 218, 6, 1806–1877.Google ScholarCross Ref
    11. Gu, X., and Yau, S.-T. 2002. Global conformal surface parameterization. In Proc. SGP, 127–137. Google ScholarDigital Library
    12. Habbecke, M., and Kobbelt, L. 2012. Linear analysis of non-linear constraints for interactive geometric modeling. Computer Graphics Forum 31, 641–650. Google ScholarDigital Library
    13. Hertrich-Jeromin, U. 2003. Introduction to Möbius differential geometry, vol. 300 of London Mathematical Society Lecture Note Series. Cambridge University Press.Google Scholar
    14. Jacobson, A., and Panozzo, D., 2014. libigl: A simple C++ geometry processing library. http://libigl.github.io/libigl/.Google Scholar
    15. Jakobs, W., and Krieg, A. 2010. Möbius transformations on R3. Complex Variables and Elliptic Equations 55, 4, 375–383.Google ScholarCross Ref
    16. Kharevych, L., Springborn, B. A., and Schröder, P. 2006. Discrete conformal mappings via circle patterns. ACM TOG 25, 2, 412–438. Google ScholarDigital Library
    17. Kilian, M., Mitra, N. J., and Pottmann, H. 2007. Geometric modeling in shape space. ACM Trans. Graph. 26, 3, 1–8. Google ScholarDigital Library
    18. Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least squares conformal maps for automatic texture atlas generation. ACM TOG 21, 3, 362–371. Google ScholarDigital Library
    19. Lipman, Y., Cohen-Or, D., Gal, R., and Levin, D. 2007. Volume and shape preservation via moving frame manipulation. ACM TOG 26, 1, 5:1–14. Google ScholarDigital Library
    20. Lipman, Y. 2012. Bounded distortion mapping spaces for triangular meshes. ACM TOG 31, 4 (July), 108:1–13. Google ScholarDigital Library
    21. Liu, Y., Pottmann, H., Wallner, J., Yang, Y.-L., and Wang, W. 2006. Geometric modeling with conical meshes and developable surfaces. ACM TOG 25, 3, 681–689. Google ScholarDigital Library
    22. Liu, L., Zhang, L., Xu, Y., Gotsman, C., and Gortler, S. J. 2008. A local/global approach to mesh parameterization. In Proc. SGP, 1495–1504. Google ScholarDigital Library
    23. Müller, C. 2011. Conformal hexagonal meshes. Geometriae Dedicata 154, 27–41.Google ScholarCross Ref
    24. Paries, N., Degener, P., and Klein, R. 2007. Simple and efficient mesh editing with consistent local frames. In Proc. PG, 461–464. Google ScholarDigital Library
    25. Pottmann, H., Liu, Y., Wallner, J., Bobenko, A. I., and Wang, W. 2007. Geometry of multi-layer freeform structures for architecture. ACM TOG 26, 3, 65:1–11. Google ScholarDigital Library
    26. Schüller, C., Kavan, L., Panozzo, D., and Sorkine-Hornung, O. 2013. Locally injective mappings. Computer Graphics Forum 32, 5, 125–135. Google ScholarDigital Library
    27. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proc. SGP, 109–116. Google ScholarDigital Library
    28. Springborn, B. A., Schröder, P., and Pinkall, U. 2008. Conformal equivalence of triangle meshes. ACM TOG 27, 3, 77:1–11. Google ScholarDigital Library
    29. Tang, C., Sun, X., Gomes, A., Wallner, J., and Pottmann, H. 2014. Form-finding with polyhedral meshes made simple. ACM TOG 33, 4, 70:1–9. Google ScholarDigital Library
    30. Vaxman, A. 2014. A projective framework for polyhedral mesh modelling. Computer Graphics Forum 33, 8, 121–131. Google ScholarDigital Library
    31. Weber, O., and Zorin, D. 2014. Locally injective parametrization with arbitrary fixed boundaries. ACM TOG 33, 4, 75. Google ScholarDigital Library
    32. Weber, O., Myles, A., and Zorin, D. 2012. Computing extremal quasiconformal maps. In Computer Graphics Forum, vol. 31, Wiley Online Library, 1679–1689. Google ScholarDigital Library
    33. Wilker, J. 1993. The quaternion formalism for Möbius groups in four or fewer dimensions. Linear Algebra Appl. 190, 99–136.Google ScholarCross Ref
    34. Winkler, T., Drieseberg, J., Alexa, M., and Hormann, K. 2010. Multi-scale geometry interpolation. Computer Graphics Forum 29, 2, 309–318.Google ScholarCross Ref
    35. Yang, Y.-L., Yang, Y.-J., Pottmann, H., and Mitra, N. J. 2011. Shape space exploration of constrained meshes. ACM TOG 30, 6, #124,1–12. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: