“Computational thermoforming”

  • ©Christian Schüller, Daniele Panozzo, Anselm Grundhöfer, Henning Zimmer, Evgeni Sorkine, and Olga Sorkine-Hornung

Conference:


Type:


Title:

    Computational thermoforming

Session/Category Title: FABRICATING STRUCTURE & APPEARANCE


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We propose a method to fabricate textured 3D models using thermoforming. Differently from industrial techniques, which target mass production of a specific shape, we propose a combined hardware and software solution to manufacture customized, unique objects. Our method simulates the forming process and converts the texture of a given digital 3D model into a pre-distorted image that we transfer onto a plastic sheet. During thermoforming, the sheet deforms to create a faithful physical replica of the digital model. Our hardware setup uses off-the-shelf components and can be calibrated with an automatic algorithm that extracts the simulation parameters from a single calibration object produced by the same process.

References:


    1. 3dsystems, 2016. ProJet CJP 660Pro. http://www.3dsystems.com/3d-printers/professional/projet-660pro. Accessed: 2016-01-18.Google Scholar
    2. Accuform, 2016. T-sim. http://www.t-sim.com. Accessed: 2016-01-18.Google Scholar
    3. Agisoft, 2016. Agisoft photoscan standard edition 1.2.2. http://www.agisoft.com/. Accessed: 2015-12-18.Google Scholar
    4. Atcheson, B., Ihrke, I., Heidrich, W., Tevs, A., Bradley, D., Magnor, M. A., and Seidel, H. 2008. Time-resolved 3D capture of non-stationary gas flows. ACM Trans. Graph. 27, 5. Google ScholarDigital Library
    5. Batty, C., Uribe, A., Audoly, B., and Grinspun, E. 2012. Discrete viscous sheets. ACM Trans. Graph. 31, 4. Google ScholarDigital Library
    6. Bermano, A., Brüschweiler, P., Grundhöfer, A., Iwai, D., Bickel, B., and Gross, M. 2013. Augmenting physical avatars using projector-based illumination. ACM Trans. Graph. 32, 6, 189:1–189:10. Google ScholarDigital Library
    7. Brox, T., Bruhn, A., Papenberg, N., and Weickert, J. 2004. High accuracy optical flow estimation based on a theory for warping. In Computer Vision – ECCV 2004, 8th European Conference on Computer Vision, Prague, Czech Republic, May 11-14, 2004. Proceedings, Part IV, Springer, T. Pajdla and J. Matas, Eds., vol. 3024 of Lecture Notes in Computer Science, 25–36.Google Scholar
    8. Cuttlefish, 2015. Cuttlefish: 3D printing pipeline. https://www.cuttlefish.de/. Accessed: 2015-03-01.Google Scholar
    9. ESI, 2016. ESI Pam-form. https://www.esi-group.com/software-solutions/virtual-manufacturing/composites/solutions-plastics-trims. Accessed: 2016-01-18.Google Scholar
    10. FUJIFILM, 2016. Thermoforming ink. http://www.fujifilm.com.au/powerofinkjet/applications/thermoforming. Accessed: 2016-04-19.Google Scholar
    11. Hergel, J., and Lefebvre, S. 2014. Clean color: Improving multi-filament 3D prints. Computer Graphics Forum 33, 2. Google ScholarDigital Library
    12. Hill, R. 1998. The Mathematical Theory of Plasticity. Oxford classic texts in the physical sciences. Clarendon Press.Google Scholar
    13. Klein, P. 2009. Fundamentals of Plastics Thermoforming. Synthesis lectures on materials engineeering. Morgan & Claypool.Google Scholar
    14. Kouba, K., Bartos, O., and Vlachopoulos, J. 1992. Computer simulation of thermoforming in complex shapes. Polymer Engineering and Science 32, 10, 699–704.Google ScholarCross Ref
    15. Koziey, B., Ghafur, M., Vlachopoulos, J., and Mirza, F. 1997. Computer simulation of thermoforming. In Composite Sheet Forming, D. Bhattacharyya, Ed., vol. 11 of Composite Materials Series. Elsevier, ch. 3, 75–89.Google Scholar
    16. Kuzmin, A., Luisier, M., and Schenk, O. 2013. Fast methods for computing selected elements of the greens function in massively parallel nanoelectronic device simulations. In Euro-Par 2013 Parallel Processing, F. Wolf, B. Mohr, and D. Mey, Eds., vol. 8097 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 533–544. Google ScholarDigital Library
    17. Lincoln, P., Welch, G., Nashel, A., Ilie, A., State, A., and Fuchs, H. 2009. Animatronic shader lamps avatars. In Proc. ISMAR, 27–33. Google ScholarDigital Library
    18. Lindemeier, T., Pirk, S., and Deussen, O. 2013. Image stylization with a painting machine using semantic hints. Computers & Graphics 37, 5. Google ScholarDigital Library
    19. Liu, L., Zhang, L., Xu, Y., Gotsman, C., and Gortler, S. J. 2008. A local/global approach to mesh parameterization. In Proceedings of the Symposium on Geometry Processing, SGP ’08, 1495–1504. Google ScholarDigital Library
    20. Ltd., M. T., 2016. Mcor Technologies Ltd. http://mcortechnologies.com/. Accessed: 2016-01-18.Google Scholar
    21. Mieghem, B. V., Desplentere, F., Bael, A. V., and Ivens, J. 2015. Improvements in thermoforming simulation by use of 3D digital image correlation. Express Polymer Letters 9, 2.Google Scholar
    22. Müller, M., and Gross, M. 2004. Interactive virtual materials. In Proc. Graphics Interface, 239–246. Google ScholarDigital Library
    23. Nied, H. F., Taylor, C. A., and Delorenzi, H. G. 1990. Three-dimensional finite element simulation of thermoforming. Polymer Engineering and Science 30, 20, 1314–1322.Google ScholarCross Ref
    24. O’Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3, 291–294. Google ScholarDigital Library
    25. Panozzo, D., Diamanti, O., Paris, S., Tarini, M., Sorkine, E., and Sorkine-Hornung, O. 2015. Texture mapping real-world objects with hydrographics. Comput. Graph. Forum (Proc. Symp. Geometry Processing) 34, 5, 65–75. Google ScholarDigital Library
    26. Prévost, R., Jacobson, A., Jarosz, W., and Sorkine-Hornung, O. 2015. Large-scale painting of photographs by interactive optimization. Computers & Graphics. In press.Google Scholar
    27. Raskar, R., Welch, G., Low, K.-l., and Bandyopadhyay, D. 2001. Shader lamps: Animating real objects with image-based illumination. In Proc. EG Workshop on Rendering. Google ScholarDigital Library
    28. Reiner, T., Carr, N., Měch, R., Št’ava, O., Dachsbacher, C., and Miller, G. 2014. Dual-color mixing for fused deposition modeling printers. Computer Graphics Forum 33, 2. Google ScholarDigital Library
    29. Rheoware, 2016. Rheoware simulation. http://www.blowmolding-thermoforming-simulation.com. Accessed: 2016-01-18.Google Scholar
    30. Rouiller, O., Bickel, B., Kautz, J., Matusik, W., and Alexa, M. 2013. 3D-printing spatially varying BRDFs. IEEE Computer Graphics and Applications 33, 6. Google ScholarDigital Library
    31. Schenk, O., Wchter, A., and Hagemann, M. 2007. Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization. Computational Optimization and Applications 36, 2-3, 321–341. Google ScholarDigital Library
    32. Schenk, O., Bollhöfer, M., and Römer, R. A. 2008. On large-scale diagonalization techniques for the anderson model of localization. SIAM Rev. 50, 1 (Feb.), 91–112. Google ScholarDigital Library
    33. Shilkrot, R., Maes, P., Paradiso, J. A., and Zoran, A. 2015. Augmented airbrush for computer aided painting (CAP). ACM Trans. Graph. 34, 2. Google ScholarDigital Library
    34. Simo, J. C., and Hughes, T. J. R. 1998. Computational inelasticity. Interdisciplinary applied mathematics. Springer.Google Scholar
    35. Thermo3D, Q., 2016. Quadraxis Thermo3D. http://quadraxis.com/site/?page_id=45. Accessed: 2016-01-18.Google Scholar
    36. transferpaper, 2015. Themagictouch cpm 6.2 – hard surface transfer paper. http://www.themagictouch.com/cpm.html/. Accessed: 2016-13-04.Google Scholar
    37. Vidimče, K., Wang, S.-P., Ragan-Kelley, J., and Matusik, W. 2013. OpenFab: A programmable pipeline for multi-material fabrication. ACM Trans. Graph. 32, 4. Google ScholarDigital Library
    38. Wald, I., Woop, S., Benthin, C., Johnson, G. S., and Ernst, M. 2014. Embree: A kernel framework for efficient CPU ray tracing. ACM Trans. Graph. 33, 4, 143:1–143:8. Google ScholarDigital Library
    39. Witkin, A., and Baraff, D., 1997. Physically based modeling: Principles and practice, siggraph course notes.Google Scholar
    40. X-Rite, 2016. X-rite. http://xritephoto.com/. Accessed: 2016-01-18.Google Scholar
    41. Zhang, Y., Yin, C., Zheng, C., and Zhou, K. 2015. Computational hydrographic printing. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2015) 34, 4 (Aug.). Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: