“Computational Light Routin3D Printed Optical Fibers for Sensing and Display” by Pereira, Matusik and Rusinkiewicz

  • ©Thiago Pereira, Wojciech Matusik, and Szymon Rusinkiewicz



Session Title:



    Computational Light Routin3D Printed Optical Fibers for Sensing and Display




    Despite recent interest in digital fabrication, there are still few algorithms that provide control over how light propagates inside a solid object. Existing methods either work only on the surface or restrict themselves to light diffusion in volumes. We use multi-material 3D printing to fabricate objects with embedded optical fibers, exploiting total internal reflection to guide light inside an object. We introduce automatic fiber design algorithms together with new manufacturing techniques to route light between two arbitrary surfaces. Our implicit algorithm optimizes light transmission by minimizing fiber curvature and maximizing fiber separation while respecting constraints such as fiber arrival angle. We also discuss the influence of different printable materials and fiber geometry on light propagation in the volume and the light angular distribution when exiting the fiber. Our methods enable new applications such as surface displays of arbitrary shape, touch-based painting of surfaces, and sensing a hemispherical light distribution in a single shot.


    1. M. Agrawala, A. C. Beers, and M. Levoy. 1995. 3D painting on scanned surfaces. In Proceedings of the Symposium on Interactive 3D Graphics (I3D’95). ACM Press, New York.
    2. M. Ben-Ezra, J. Wang, B. Wilburn, X. Li, and L. Ma. 2008. An led-only brdf measurement device. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR’08).
    3. M. Botsch and L. Kobbelt. 2005. Real-time shape editing using radial basis functions. Comput. Graph. Forum 24, 3.
    4. K. J. Dana. 2001. BRDF/BTF measurement device. In Proceedings of the International Conference on Computer Vision (ICCV’01).
    5. Y. Dong, J. Wang, F. Pellacini, X. Tong, and B. Guo. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29, 4.
    6. J. Duchon. 1977. Splines minimizing rotation-invariant semi-norms in sobolev spaces. In Constructive Theory of Functions of Several Variables, Springer.
    7. M. Finckh, H. Dammertz, and H. P. A. Lensch. 2010. Geometry construction from caustic images. In Proceedings of the European Conference on Computer Vision (ECCV’10). Springer.
    8. J. Ford, I. Stamenov, S. J. Olivas, G. Schuster, N. Motamedi, I. P. Agurok, R. Stack, A. Johnson, and R. Morrison. 2013. Fiber-coupled monocentric lens imaging. In Proceedings of the Conference on Imaging and Applied Optics.
    9. D. Gloge. 1972. Bending loss in multimode fibers with graded and ungraded core index. Appl. Optics 11, 11, 2506–2513.
    10. J. Gomes, L. Darsa, B. Costa, and L. Velho. 1998. Warping and Morphing of Graphical Objects. Morgan Kaufmann, San Fransisco.
    11. M. Hasan, M. Fucis, W. Matusik, H. Pfister, and S. Rusinkiewicz. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29, 3.
    12. A. Jacobson, T. Weinkauf, and O. Sorkine. 2012. Smooth shape-aware functions with controlled extrema. Comput. Graph. Forum 31, 5.
    13. L. Kociszewski, D. Pysz, and R. Stephen. 1993. Double crucible method in the fiber optic image guides (tapers) manufacturing. In Video Communications and Fiber Optic Networks, International Society for Optics and Photonics, 206–219.
    14. G. E. Liljegren and E. L. Foster. 1990. Figure with back projected image using fiber optics. U.S. Patent Number 4978216, Walt Disney Company.
    15. W. Matusik, B. Ajdin, J. Gu, J. Lawrence, H. P. A. Lensch, F. Pellacini, and S. Rusinkiewicz. 2009. Printing spatially-varying reflectance. ACM Trans. Graph. 28, 5.
    16. H. P. Moreton and C. H. Sequin. 1992. Functional optimization for fair surface designs. ACM Trans. Graph. 26, 2, 167–176.
    17. M. Papas, W. Jarosz, W. Jakob, S. Rusinkiewicz, W. Matusik, and T. Weyrich. 2011. Goal-based caustics. Comput. Graph. Forum 30, 2, 503–511.
    18. R. Raskar, G. Welch, K.-L. Low, and D. Bandyopadhyay. 2001. Shader lamps: Animating real objects with image-based illumination. In Proceedings of the 12th Eurographics Workshop on Rendering Techniques. Springer, 89–102.
    19. R. Raskar, P. Ziegler, and T. Willwacher. 2002. Cartoon dioramas in motion. In Proceedings of the 2nd International Symposium on Non-Photorealistic Animation and Rendering (NPAR’02). ACM Press, New York.
    20. J. M. Senior. 1992. Optical Fiber Communications: Principles and Practice, 2nd Ed. Prentice-Hall International.
    21. O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rossl, and H.-P. Seidel. 2004. Laplacian surface editing. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Geometry Processing (SGP’04). ACM Press, New York, 175–184.
    22. G. Turk and J. F. O’Brien. 1989. Shape transformation using variational implicit functions. In Proceedings of the Annual ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques.
    23. T. Weyrich, P. Peers, W. Matusik, and S. Rusinkiewicz. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. 28, 3, 1–6.
    24. K. Willis, E. Brockmeyer, S. Hudson, and I. Poupyrev. 2012. Printed optics: 3D printing of embedded optical elements for interactive devices. In Proceedings of the Annual ACM Symposium on User Interface Software and Technology (UIST’12). ACM Press, New York.

ACM Digital Library Publication: