“Computational design of fabric formwork” by Zhang, Fang, Skouras, Gieseler, Wang, et al. …

  • ©Xiaoting Zhang, Guoxin Fang, Melina Skouras, Gwenda Gieseler, Charlie C. L. Wang, and Emily Whiting




    Computational design of fabric formwork

Session/Category Title: Fabricated Results



    We present an inverse design tool for fabric formwork – a process where flat panels are sewn together to form a fabric container for casting a plaster sculpture. Compared to 3D printing techniques, the benefit of fabric formwork is its properties of low-cost and easy transport. The process of fabric formwork is akin to molding and casting but having a soft boundary. Deformation of the fabric container is governed by force equilibrium between the pressure forces from liquid fill and tension in the stretched fabric. The final result of fabrication depends on the shapes of the flat panels, the fabrication orientation and the placement of external supports. Our computational framework generates optimized flat panels and fabrication orientation with reference to a target shape, and determines effective locations for external supports. We demonstrate the function of this design tool on a variety of models with different shapes and topology. Physical fabrication is also demonstrated to validate our approach.


    1. Hee-Kap Ahn, Mark De Berg, Prosenjit Bose, Siu-Wing Cheng, Dan Halperin, Jiri Matoušek, and Otfried Schwarzkopf. 2002. Separating an object from its cast. Computer-Aided Design 34, 8 (2002), 547–559.Google ScholarCross Ref
    2. Thomas Alderighi, Luigi Malomo, Daniela Giorgi, Nico Pietroni, Bernd Bickel, and Paolo Cignoni. 2018. Metamolds: computational design of silicone molds. ACM Transactions on Graphics (TOG) 37, 4 (2018), 136. Google ScholarDigital Library
    3. Aric Bartle, Alla Sheffer, Vladimir G. Kim, Danny M. Kaufman, Nicholas Vining, and Floraine Berthouzoz. 2016. Physics-driven Pattern Adjustment for Direct 3D Garment Editing. ACM Trans. Graph. 35, 4, Article 50 (July 2016), 11 pages. Google ScholarDigital Library
    4. James M. Bern, Kai-Hung Chang, and Stelian Coros. 2017. Interactive Design of Animated Plushies. ACM Trans. Graph. 36, 4, Article 80 (July 2017), 11 pages. Google ScholarDigital Library
    5. Gaurav Bharaj, David IW Levin, James Tompkin, Yun Fei, Hanspeter Pfister, Wojciech Matusik, and Changxi Zheng. 2015. Computational design of metallophone contact sounds. ACM Transactions on Graphics (TOG) 34, 6 (2015), 223. Google ScholarDigital Library
    6. Bernd Bickel, Moritz Bächer, Miguel A Otaduy, Hyunho Richard Lee, Hanspeter Pfister, Markus Gross, and Wojciech Matusik. 2010. Design and Fabrication of Materials with Desired Deformation Behavior. ACM Trans. Graph. 29, 4, Article 63 (July 2010), 10 pages. Google ScholarDigital Library
    7. Robert Bogue. 2013. 3D printing: The dawn of a new era in manufacturing? Assembly Automation 33, 4 (2013), 307–311. Google ScholarDigital Library
    8. Javier Bonet and Richard D Wood. 1997. Nonlinear continuum mechanics for finite element analysis. Cambridge university press.Google Scholar
    9. Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (July 2014), 11 pages. Google ScholarDigital Library
    10. Julie Brennan, Remo Pedreschi, Peter Walker, and Martin Ansell. 2013. The potential of advanced textiles for fabric formwork. Institute of Civil Engineering (ICE)-Construction Materials Journal 166, 4 (2013), 229–237.Google ScholarCross Ref
    11. Richard A Buswell, RC Soar, Alistair GF Gibb, and A Thorpe. 2007. Freeform construction: mega-scale rapid manufacturing for construction. Automation in construction 16, 2 (2007), 224–231.Google Scholar
    12. Yunus A. Çengel and John M. Cimbala. 2017. Fluid Mechanics: Fundamentals and Applications. McGraw-Hill.Google Scholar
    13. Xuelin Chen, Hao Zhang, Jinjie Lin, Ruizhen Hu, Lin Lu, Qi-Xing Huang, Bedrich Benes, Daniel Cohen-Or, and Baoquan Chen. 2015. Dapper: decompose-and-pack for 3D printing. ACM Trans. Graph. 34, 6 (2015), 213. Google ScholarDigital Library
    14. Xiang Chen, Changxi Zheng, Weiwei Xu, and Kun Zhou. 2014. An asymptotic numerical method for inverse elastic shape design. ACM Trans. Graph. 33, 4 (2014), 95. Google ScholarDigital Library
    15. Kwang-Jin Choi and Hyeong-Seok Ko. 2002. Stable but Responsive Cloth. ACM Trans. Graph. 21, 3 (July 2002), 604–611. Google ScholarDigital Library
    16. David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. 2004. Variational shape approximation. In ACM Transactions on Graphics (TOG), Vol. 23. ACM, 905–914. Google ScholarDigital Library
    17. James A Fay. 1994. Introduction to fluid mechanics. MIT press.Google Scholar
    18. Robert M Foster and Tim J Ibell. 2016. A numerical solution for the shape of fabric-formed concrete structures. In Structures, Vol. 8. Elsevier, 17–24.Google Scholar
    19. Hongbo Fu, Daniel Cohen-Or, Gideon Dror, and Alla Sheffer. 2008. Upright orientation of man-made objects. In ACM transactions on graphics (TOG), Vol. 27. ACM, 42. Google ScholarDigital Library
    20. MA Ganter and PA Skoglund. 1993. Feature extraction for casting core development. Journal of Mechanical Design 115, 4 (1993), 744–750.Google ScholarCross Ref
    21. Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun. 2007. Efficient Simulation of Inextensible Cloth. ACM Trans. Graph. 26, 3, Article 49 (July 2007). Google ScholarDigital Library
    22. Clément Gosselin, Romain Duballet, Ph Roux, Nadja Gaudillière, Justin Dirrenberger, and Ph Morel. 2016. Large-scale 3D printing of ultra-high performance concrete-a new processing route for architects and builders. Materials & Design 100 (2016), 102–109.Google ScholarCross Ref
    23. Mikell P. Groover. 2011. Part II – Solidification Processes. In Introduction to Manufacturing Processes.Google Scholar
    24. Steffen Grunewald, Bas Janssen, Roel Schipper, K J. Vollers, and J C. Walraven. 2012. Deliberate deformation of concrete after casting. In Proceedings of the Second International Conference on Flexible Formwork.Google Scholar
    25. Ruslan Guseinov, Eder Miguel, and Bernd Bickel. 2017. CurveUps: Shaping Objects from Flat Plates with Tension-Actuated Curvature. ACM Transactions on Graphics (SIGGRAPH 2017) 36, 4 (2017). Google ScholarDigital Library
    26. W.J. Hawkins, H. Herrmann, T.J. Ibell, B. Kromoser, A. Michaelski, J.J. Orr, R. Pedreschi, A. Pronk, R. Schipper, P. Shepherd, D. Veenendaal, R. Wansdronk, and M. West. 2016. Flexible formwork technologies: A state of the art review. Structural Concrete 17, 6 (December 2016).Google ScholarCross Ref
    27. Ruizhen Hu, Honghua Li, Hao Zhang, and Daniel Cohen-Or. 2014. Approximate pyramidal shape decomposition. ACM Trans. Graph. 33, 6 (2014), 213–1. Google ScholarDigital Library
    28. Mary Krumboltz Hurd. 1995. Formwork for concrete. (1995).Google Scholar
    29. Dan Julius, Vladislav Kraevoy, and Alla Sheffer. 2005. D-Charts: Quasi-Developable Mesh Segmentation. Computer Graphics Forum (2005).Google Scholar
    30. Behrokh Khoshnevis. 2004. Automated construction by contour crafting-related robotics and information technologies. Automation in Construction 13, 1 (2004), 5–19.Google ScholarCross Ref
    31. Martin Kilian, Simon Flöry, Zhonggui Chen, Niloy J. Mitra, Alla Sheffer, and Helmut Pottmann. 2008. Curved Folding. ACM Trans. Graph. 27, 3, Article 75 (Aug. 2008), 9 pages. Google ScholarDigital Library
    32. Tsz-Ho Kwok, Weiwei Wan, Jia Pan, Charlie CL Wang, Jianjun Yuan, Kensuke Harada, and Yong Chen. 2016. Rope caging and grasping. In Robotics and Automation (ICRA), 2016 IEEE International Conference on. IEEE, 1980–1986.Google ScholarDigital Library
    33. Thanh T Le, Simon A Austin, Sungwoo Lim, Richard A Buswell, Alistair GF Gibb, and Tony Thorpe. 2012. Mix design and fresh properties for high-performance printing concrete. Materials and structures 45, 8 (2012), 1221–1232.Google Scholar
    34. Alan C Lin and Nguyen Huu Quang. 2014. Automatic generation of mold-piece regions and parting curves for complex CAD models in multi-piece mold design. Computer-Aided Design 57 (2014), 15–28.Google ScholarCross Ref
    35. Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, and Wenping Wang. 2006. Geometric Modeling with Conical Meshes and Developable Surfaces. ACM Trans. Graph. 25, 3 (July 2006), 681–689. Google ScholarDigital Library
    36. Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik. 2012. Chopper: Partitioning Models into 3D-printable Parts. ACM Trans. Graph. 31, 6, Article 129 (Nov. 2012), 9 pages. Google ScholarDigital Library
    37. Luigi Malomo, Nico Pietroni, Bernd Bickel, and Paolo Cignoni. 2016. FlexMolds: Automatic Design of Flexible Shells for Molding. ACM Trans. Graph. 35, 6, Article 223 (Nov. 2016), 12 pages. Google ScholarDigital Library
    38. Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and Markus Gross. 2010. Unified Simulation of Elastic Rods, Shells, and Solids. ACM Trans. Graph. 29, 4, Article 39 (July 2010), 10 pages. Google ScholarDigital Library
    39. Jun Mitani and Hiromasa Suzuki. 2004. Making Papercraft Toys from Meshes Using Strip-based Approximate Unfolding. ACM Trans. Graph. 23, 3 (Aug. 2004), 259–263. Google ScholarDigital Library
    40. Yuki Mori and Takeo Igarashi. 2007. Plushie: An Interactive Design System for Plush Toys. ACM Trans. Graph. 26, 3, Article 45 (July 2007). Google ScholarDigital Library
    41. Kazutaka Nakashima, Thomas Auzinger, Emmanuel Iarussi, Ran Zhang, Takeo Igarashi, and Bernd Bickel. 2018. CoreCavity: interactive shell decomposition for fabrication with two-piece rigid molds. ACM Transactions on Graphics (TOG) 37, 4 (2018), 135. Google ScholarDigital Library
    42. Raymond W Ogden. 1997. Non-linear elastic deformations. Courier Corporation.Google Scholar
    43. John J Orr, Anthony P Darby, Timothy J Ibell, MC Evernden, and Mike Otlet. 2011. Concrete structures using fabric formwork. The Structural Engineer 89, 8 (2011), 20–26.Google Scholar
    44. Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis Zorin. 2015. Elastic textures for additive fabrication. ACM Transactions on Graphics (TOG) 34, 4 (2015), 135. Google ScholarDigital Library
    45. Jesús Pérez, Miguel A. Otaduy, and Bernhard Thomaszewski. 2017. Computational Design and Automated Fabrication of Kirchhoff-plateau Surfaces. ACM Trans. Graph. 36, 4, Article 62 (July 2017), 12 pages. Google ScholarDigital Library
    46. Jesús Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A Canabal, Robert Sumner, and Miguel A Otaduy. 2015. Design and fabrication of flexible rod meshes. ACM Transactions on Graphics (TOG) 34, 4 (2015), 138. Google ScholarDigital Library
    47. M. Popescu, L. Reiter, A. Liew, T. Van Mele, R.J. Flatt, and P. Block. 2018. Building in concrete with a knitted stay-in-place formwork: Prototype of a concrete shell bridge. Structures 14 (June 2018), 322–332.Google Scholar
    48. M. Popescu, M. Rippmann, T. Van Mele, and P. Block. 2017. Automated generation of knit patterns for non-developable surfaces. In Humanizing Digital Reality – Proceedings of the Design Modelling Symposium 2017, K. De Rycke et al. (Ed.). Springer, Paris, 271–284.Google Scholar
    49. Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. 2018. Discrete Geodesic Nets for Modeling Developable Surfaces. ACM Trans. Graph. 37, 2 (2018). Google ScholarDigital Library
    50. Kenneth Rose, Alla Sheffer, Jamie Wither, Marie-Paule Cani, and Boris Thibert. 2007. Developable Surfaces from Arbitrary Sketched Boundaries. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing (SGP ’07). 163–172. Google ScholarDigital Library
    51. Robert P Schmitz. 2006. Fabric-formed concrete panel design. In Building Integration Solutions. 1–15.Google Scholar
    52. Camille Schreck, Damien Rohmer, Stefanie Hahmann, Marie-Paule Cani, Shuo Jin, Charlie C. L. Wang, and Jean-Francis Bloch. 2015. Nonsmooth Developable Geometry for Interactively Animating Paper Crumpling. ACM Trans. Graph. 35, 1, Article 10 (Dec. 2015), 18 pages. Google ScholarDigital Library
    53. Christian Schüller, Daniele Panozzo, Anselm Grundhöfer, Henning Zimmer, Evgeni Sorkine, and Olga Sorkine-Hornung. 2016. Computational Thermoforming. ACM Trans. Graph. 35, 4, Article 43 (July 2016), 9 pages. Google ScholarDigital Library
    54. Christian Schüller, Roi Poranne, and Olga Sorkine-Hornung. 2018. Shape Representation by Zippables. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH) 37, 4 (2018). Google ScholarDigital Library
    55. Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara Daraio, and Markus Gross. 2015. Microstructures to control elasticity in 3D printing. ACM Transactions on Graphics (TOG) 34, 4 (2015), 136. Google ScholarDigital Library
    56. Idan Shatz, Ayellet Tal, and George Leifman. 2006. Paper craft models from meshes. The Visual Computer 22, 9 (01 Sep 2006), 825–834. Google ScholarDigital Library
    57. Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In Applied computational geometry towards geometric engineering. Springer, 203–222. Google ScholarDigital Library
    58. Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus Gross. 2013. Computational design of actuated deformable characters. ACM Transactions on Graphics (TOG) 32, 4 (2013), 82. Google ScholarDigital Library
    59. Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel, Eitan Grinspun, and Markus Gross. 2014. Designing inflatable structures. ACM Transactions on Graphics (TOG) 33, 4 (2014), 63. Google ScholarDigital Library
    60. Peng Song, Bailin Deng, Ziqi Wang, Zhichao Dong, Wei Li, Chi-Wing Fu, and Ligang Liu. 2016. CofiFab: coarse-to-fine fabrication of large 3D objects. ACM Transactions on Graphics (TOG) 35, 4 (2016), 45. Google ScholarDigital Library
    61. Nobuyuki Umetani, Danny M Kaufman, Takeo Igarashi, and Eitan Grinspun. 2011. Sensitive couture for interactive garment modeling and editing. ACM Trans. Graph. 30, 4 (2011), 90. Google ScholarDigital Library
    62. Tom Van Mele and Philippe Block. 2011. A novel form finding method for fabric formwork for concrete shells. J. Int. Assoc. Shell and Spatial Structures 52, 217224 (2011), 31.Google Scholar
    63. Juraj Vanek, JA Galicia, Bedrich Benes, R Měch, N Carr, Ondrej Stava, and GS Miller. 2014. Packmerger: A 3d print volume optimizer. In Computer Graphics Forum, Vol. 33. Wiley Online Library, 322–332. Google ScholarDigital Library
    64. D. Veenendaal and P. Block. 2012. Computational form finding for fabric formworks: an overview and discussion. In Proceedings of the 2nd international conference on flexible formwork, J. et al. Ohr (Ed.). Bath, UK, 368–378.Google Scholar
    65. Diederik Veenendaal and Philippe Block. 2015. Design process of prestressed membrane formworks for thin-shell structures. In Proc. Int. Assoc. Shell Spat. Struct. Symp.Google Scholar
    66. Diederik Veenendaal, Mark West, and Philippe Block. 2011. History and overview of fabric formwork: using fabrics for concrete casting. Structural Concrete 12, 3 (2011), 164–177.Google ScholarCross Ref
    67. Pascal Volino, Martin Courchesne, and Nadia Magnenat Thalmann. 1995. Versatile and Efficient Techniques for Simulating Cloth and Other Deformable Objects. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’95). 137–144. Google ScholarDigital Library
    68. Pascal Volino, Nadia Magnenat-Thalmann, and Francois Faure. 2009. A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM Transactions on Graphics 28, 4 (2009), Article-No. Google ScholarDigital Library
    69. Andreas Wächter and Lorenz T Biegler. 2006. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical programming 106, 1 (2006), 25–57. Google ScholarDigital Library
    70. Charlie CL Wang. 2008. Computing length-preserved free boundary for quasi-developable mesh segmentation. IEEE Transactions on Visualization and Computer Graphics 14, 1 (2008), 25–36. Google ScholarDigital Library
    71. Charlie CL Wang and Kai Tang. 2010. Pattern Computation for Compression Garment by a Physical/Geometric Approach. Comput. Aided Des. 42, 2 (Feb. 2010), 78–86. Google ScholarDigital Library
    72. Huamin Wang, James F O’Brien, and Ravi Ramamoorthi. 2011. Data-driven elastic models for cloth: modeling and measurement. In ACM Transactions on Graphics (TOG), Vol. 30. ACM, 71. Google ScholarDigital Library
    73. Marc Weinstein and Souran Manoochehri. 1996. Geometric influence of a molded part on the draw direction range and parting line locations. Journal of Mechanical Design 118, 1 (1996), 29–39.Google ScholarCross Ref
    74. M West. 2006. Flexible fabric molds for precast trusses. Betonwerk + Fertigteil-Technik 72 (01 2006), 46–52.Google Scholar
    75. Mark West. 2016. The Fabric Formwork Book: Methods for Building New Architectural and Structural Forms in Concrete. Routledge.Google Scholar
    76. Mark West and Ronnie Araya. 2009. Fabric Formwork for Concrete Structures and Architecture. In International Conference on Textile Composites and Inflatable Structures. 184–188.Google Scholar
    77. Xue Yan and PENG Gu. 1996. A review of rapid prototyping technologies and systems. Computer-Aided Design 28, 4 (1996), 307–318.Google ScholarCross Ref
    78. Miaojun Yao, Zhili Chen, Linjie Luo, Rui Wang, and Huamin Wang. 2015. Level-set-based partitioning and packing optimization of a printable model. ACM Transactions on Graphics (TOG) 34, 6 (2015), 214. Google ScholarDigital Library
    79. XG Ye, JYH Fuh, and KS Lee. 2004. Automatic undercut feature recognition for side core design of injection molds. Journal of Mechanical Design 126, 3 (2004), 519–526.Google ScholarCross Ref
    80. XG Ye, Jerry YH Fuh, and Kim Seng Lee. 2001. A hybrid method for recognition of undercut features from moulded parts. Computer-Aided Design 33, 14 (2001), 1023–1034.Google ScholarCross Ref
    81. Jonas Zehnder, Espen Knoop, Moritz Bächer, and Bernhard Thomaszewski. 2017. Metasilicone: Design and Fabrication of Composite Silicone with Desired Mechanical Properties. ACM Trans. Graph. 36, 6, Article 240 (Nov. 2017), 13 pages. Google ScholarDigital Library
    82. Xiaoting Zhang, Xinyi Le, Zihao Wu, Emily Whiting, and Charlie C.L. Wang. 2016. Data-Driven Bending Elasticity Design by Shell Thickness. Comput. Graph. Forum 35, 5 (Aug. 2016), 157–166.Google ScholarCross Ref

ACM Digital Library Publication:

Overview Page: