“Comprehensive Biomechanical Modeling and Simulation of the Upper Body” by Lee, Sifakis and Terzopoulos

  • ©

Conference:


Type(s):


Title:

    Comprehensive Biomechanical Modeling and Simulation of the Upper Body

Presenter(s)/Author(s):



Abstract:


    We introduce a comprehensive biomechanical model of the human upper body. Our model confronts the combined challenge of modeling and controlling more or less all of the relevant articular bones and muscles, as well as simulating the physics-based deformations of the soft tissues. Its dynamic skeleton comprises 68 bones with 147 jointed degrees of freedom, including those of each vertebra and most of the ribs. To be properly actuated and controlled, the skeletal submodel requires comparable attention to detail with respect to muscle modeling. We incorporate 814 muscles, each of which is modeled as a piecewise uniaxial Hill-type force actuator. To simulate biomechanically-realistic flesh deformations, we also develop a coupled finite element model with the appropriate constitutive behavior, in which are embedded the detailed 3D anatomical geometries of the hard and soft tissues. Finally, we develop an associated physics-based animation controller that computes the muscle activation signals necessary to drive the elaborate musculoskeletal system in accordance with a sequence of target poses specified by an animator.

References:


    1. Albrecht, I., Haber, J., and Seidel, H.-P. 2003. Construction and animation of anatomically based human hand models. In Proceedings of the ACM SIGGRAPH/EG Symposium on Computer Animation. 98–109. 
    2. Albro, J. V., Sohl, G. A., Bobrow, J. E., and Park, F. C. 2000. On the computation of optimal high-dives. In Proceedings of the IEEE International Conference on Robotics and Automation. 3958–3963.
    3. Blemker, S. S. 2004. 3D modeling of complex muscle architecture and geometry. PhD dissertation, Mechanical Engineering Department, Stanford University.
    4. Bonet, J. and Wood, R. 1997. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge, UK.
    5. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3, 594–603. 
    6. Chadwick, J. E., Haumann, D. R., and Parent, R. E. 1989. Layered construction of deformable animated characters. Comput. Graph. 23, 3, 243–252. 
    7. Chen, D. T., and Zeltzer, D. 1992. Pump it up: Computer animation of a biomechanically based model of muscle using the finite element method. Comput. Graph. 26, 2, 89–98. 
    8. Crowninshield, R. D. 1978. Use of optimization techniques to predict muscle forces. J. Biomech. Eng. 100, 88–92.
    9. Delp, S. L. and Loan, J. P. 1995. A software system to develop and analyze models of musculoskeletal structures. Comput. Biol. Med. 25, 21–34.
    10. DiLorenzo, P. C., Zordan, V. B., and Sanders, B. L. 2008. Laughing out loud: Control for modeling anatomically inspired laughter using audio. ACM Trans. Graph. 27, 5. 
    11. Dong, F., Clapworthy, G. J., Krokos, M. A., and Yao, J. 2002. An anatomy-based approach to human muscle modeling and deformation. IEEE Trans. Vis. Comput. Graph. 8, 2, 154–170. 
    12. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proceedings of ACM SIGGRAPH. Annual Conference Series, 251–260. 
    13. Featherstone, R. 1987. Robot Dynamics Algorithms. Kluwer Academic Publishers. 
    14. Grinspun, E., Krysl, P., and Schröder, P. 2002. CHARMS: A simple framework for adaptive simulation. ACM Trans. Graph. 21, 3, 281–290. 
    15. Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O’Brien, J. F. 1995. Animating human athletics. In Proceedings of ACM SIGGRAPH. Annual Conference Series, 71–78. 
    16. Holzbaur, K. R. S., Murray, W. M., and Delp, S. L. 2005. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Annals Biomed. Eng. 33, 6, 829–840.
    17. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. 1993. Mesh optimization. In Proceedings of ACM SIGGRAPH. 19–26. 
    18. Hu, W., Marhefka, D. W., and Orin, D. E. 2005. Hybrid kinematic and dynamic simulation of running machines. IEEE Trans. Robotics 21, 3, 490–497. 
    19. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the ACM SIGGRAPH/EG Symposium on Computer Animation. 131–140. 
    20. Kähler, K., Haber, J., Yamauchi, H., and Seidel, H.-P. 2002. Head shop: Generating animated head models with anatomical structure. In Proceedings of the ACM SIGGRAPH/EG Symposium on Computer Animation. 55–64. 
    21. Kapandji, I. A. 1974. The Physiology of the Joints. Vol. 3: The Trunk and the Vertebral Column. Churchill Livingstone, Edinburgh.
    22. Kokkevis, E. and Metaxas, D. 1998. Efficient dynamic constraints for animating articulated figures. Multibody Syst. Dyn. 2, 89–114
    23. Komura, T., Shinagawa, Y., and Kunii, T. L. 1997. A muscle-based feed-forward controller of the human body. Comput. Graph. Forum 16, 3, 165–176.
    24. Komura, T., Shinagawa, Y., and Kunii, T. L. 2000. Creating and retargeting motion by the musculoskeletal human body model. Vis. Comput. 16, 5, 254–270.
    25. Labelle, F., and Shewchuk, J. R. 2007. Isosurface stuffing: Fast tetrahedral meshes with good dihedral angles. ACM Trans. Graph. 26, 3, 57. 
    26. Lee, S.-H. and Terzopoulos, D. 2006. Heads up! Biomechanical modeling and neuromuscular control of the neck. ACM Trans. Graph. 25, 3, 1188–1198. 
    27. Lee, S.-H. and Terzopoulos, D. 2008. Spline joints for multibody dynamics. ACM Trans. Graph. 27, 3. 
    28. Lee, Y., Terzopoulos, D., and Waters, K. 1995. Realistic modeling for facial animation. In Proceedings of ACM SIGGRAPH. Annual Conference Series, 55–62. 
    29. Lee, S.-H. 2008. Biomechanical modeling and control of the human body for computer animation. PhD dissertation, Computer Science Department, University of California, Los Angeles.
    30. Molino, N., Bridson, R., Teran, J., and Fedkiw, R. 2003. A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In Proceedings of the 12th International Meshing Roundtable. 103–114.
    31. Monheit, G., and Badler, N. I. 1991. A kinematic model of the human spine and torso. IEEE Comput. Graph. Appl. 11, 2, 29–38. 
    32. Nakamura, Y., Yamane, K., Fujita, Y., and Suzuki, I. 2005. Somatosensory computation for man machine interface from motion-capture data and musculoskeletal human model. IEEE Trans. Robotics 21, 1, 58–66. 
    33. Ng-Thow-Hing, V. 2001. Anatomically-based models for physical and geometrical reconstruction of humans and other animals. PhD dissertation, Department of Computer Science, University of Toronto. 
    34. Nussbaum, M. A., Chaffin, D. B., and Rechtien, C. J. 1995. Muscle lines-of-action affect predicted forces in optimization-based spine muscle modeling. J. Biomech. 28, 4, 401–409.
    35. Osher, S. and Fedkiw, R. 2002. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, Berlin, Germany.
    36. Pai, D. K., Sueda, S., and Wei, Q. 2005. Fast physically based musculoskeletal simulation. In Proceedings of Sketches and Applications of ACM SIGGRAPH. 
    37. Pandy, M. G., Zajac, F. E., Sim, E., and Levine, W. S. 1990. An optimal control model for maximum-height human jumping. J. Biomech. 23, 12, 1185–1198.
    38. Raikova, R. T. and Prilutsky, B. I. 2001. Sensitivity of predicted muscle forces to parameters of the optimization-based human leg model revealed by analytical and numerical analyses. J. Biomech. 34, 10, 1243–1255.
    39. Sapio, V. D., Warren, J., Khatib, O., and Delp, S. 2005. Simulating the task-level control of human motion: A methodology and framework for implementation. Vis. Comput. 21, 5, 289–302.
    40. Scheepers, F., Parent, R. E., Carlson, W. E., and May, S. F. 1997. Anatomy-based modeling of the human musculature. In Proceedings of SIGGRAPH. Annual Conference Series, 163–172. 
    41. Shapiro, A., Pighin, F., and Faloutsos, P. 2003. Hybrid control for interactive character animation. In Proceedings of the 11th Pacific Conference on Computer Graphics and Applications (PG’03). 455–461. 
    42. Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph. 24, 3, 417–425. 
    43. Sifakis, E., Der, K., and Fedkiw, R. 2007a. Arbitrary cutting of deformable tetrahedralized objects. In Proceedings of the ACM SIGGRAPH/EG Symposium on Computer Animation. 73–80. 
    44. Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2007b. Hybrid simulation of deformable solids. In Proceedings of the ACM SIGGRAPH/EG Symposium on Computer Animation. 81–90. 
    45. Sifakis, E. 2007. Algorithmic aspects of the simulation and control of computer generated human anatomy models. PhD dissertation, Computer Science Department, Stanford University.
    46. Sueda, S., Kaufman, A., and Pai, D. K. 2008. Musculotendon simulation for hand animation. ACM Trans. Graph. 27, 3. 
    47. Teran, J., Sifakis, E., Blemker, S. S., Ng-Thow-Hing, V., Lau, C., and Fedkiw, R. 2005a. Creating and simulating skeletal muscle from the visible human data set. IEEE Trans. Vis. Comput. Graph. 11, 3, 317–328. 
    48. Teran, J., Sifakis, E., Blemker, S. S., Ng-Thow-Hing, V., Lau, C., and Fedkiw, R. 2005b. Creating and simulating skeletal muscle from the visible human data set. IEEE Trans. Vis. Comput. Graph. 11, 3, 317–328. 
    49. Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. 2005c. Robust quasistatic finite elements and flesh simulation. In Proceedings of the ACM SIGGRAPH/EG Symposium on Computer Animation. 181–190. 
    50. Thelen, D. G., Anderson, F. C., and Delp, S. L. 2003. Generating dynamic simulations of movement using computed muscle control. In J. Biomech. vol. 36, 321–328.
    51. Tsang, W., Singh, K., and Fiume, E. 2005. Helping hand: An anatomically accurate inverse dynamics solution for unconstrained hand motion. In Proceedings of the ACM SIGGRAPH/EG Symposium on Computer Animation (SCA’05). 319–328. 
    52. van Nierop, O. A., van der Helm, A., Overbeeke, K. J., and Djajadiningrat, T. J. 2008. A natural human hand model. Vis. Comput. 24, 1 (Jan.), 31–44. 
    53. Waters, K. 1987. A muscle model for animating three-dimensional facial expression. ACM Trans. Comput. Graph. 22, 4, 17–24.
    54. Wicke, M., Botsch, M., and Gross, M. 2007. A finite element method on convex polyhedra. Computer Graphics Forum 26, 3, 355–364.
    55. Wilhelms, J. and Gelder, A. V. 1997. Anatomically based modeling. In Proceedings of SIGGRAPH. Annual Conference Series, 173–180. 
    56. Zajac, F. 1989. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Criti. Rev. Biomed. Eng. 17, 4, 359–411.Google Scholar
    57. Zordan, V. B. and Hodgins, J. K. 2002. Motion capture-driven simulations that hit and react. In Proceedings of the ACM SIGGRAPH/EG Symposium on Computer Animation (SCA’02), ACM, New York, 89–96. Google ScholarDigital Library
    58. Zordan, V. B., Celly, B., Chiu, B., and DiLorenzo, P. C. 2004. Breathe easy: Model and control of simulated respiration for animation. In Proceedings of the ACM SIGGRAPH/EG Symposium on Computer Animation. 29–37. 

ACM Digital Library Publication:



Overview Page: