“Color imaging and pattern hiding on a metallic substrate” by Pjanic and Hersch

  • ©Petar Pjanic and Roger D. Hersch




    Color imaging and pattern hiding on a metallic substrate



    We present a new approach for the reproduction of color images on a metallic substrate that look bright and colorful under specular reflection observation conditions and also look good under non-specular reflection observation conditions. We fit amounts of both the white ink and the classical cyan, magenta and yellow inks according to a formula optimizing the reproduction of colors simultaneously under specular and non-specular observation conditions. In addition, we can hide patterns such as text or graphical symbols in one viewing mode, specular or non-specular, and reveal them in the other viewing mode. We rely on the trade-off between amounts of white diffuse ink and amounts of cyan, magenta and yellow inks to control lightness in specular and in non-specular observation conditions. Further effects are grayscale images that alternate from a first image to a second independent image when tilting the print from specular to non-specular reflection observation conditions. Applications comprise art and entertainment, publicity, posters, as well as document security.


    1. Alexa, M, and Matusik, W. 2010. Reliefs as images. ACM Trans. on Graphics 29, 4 (July), 60:1–60:7. Google ScholarDigital Library
    2. Balasubramanian, R. 1999. Optimization of the spectral Neugebauer model for printer characterization, Journal of Electronic Imaging 8, 2, 156–166.Google ScholarCross Ref
    3. Bermano, A., Baran, I., Alexa, M., Matusik, W. 2012. ShadowPix: Multiple images from self shadowing, Computer Graphics Forum 31, 593–602. Google ScholarDigital Library
    4. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., and Taubin, G. 1999. The Ball-Pivoting Algorithm for Surface Reconstruction, IEEE Trans. Vis. and Comp. Graph. 5, 4, 349–359. Google ScholarDigital Library
    5. Dong, Y., Tong X., Pellacini, F., and Guo, B. 2012. Printing spatially-varying reflectance for reproducing HDR images, ACM Trans. Graph. 31, 4 (July), 40:1–40:7. Google ScholarDigital Library
    6. Glasner, D., Zickler, T., Levin, A. 2014. A Reflectance Display, ACM Trans. Graph. 33, 4, (July), 61:1–61:12. Google ScholarDigital Library
    7. Hersch, R. D., Collaud, F., Emmel, P. 2003. Reproducing color images with embedded metallic patterns, Proceedings SIGGRAPH, ACM Trans. Graph. 22, 3, 427–436. Google ScholarDigital Library
    8. Lan, Y., Dong, Y., Pellacini, F., Tong, X. 2013. Bi-scale appearance fabrication. ACM Trans. Graph. 32, 4, 145:1–145:11. Google ScholarDigital Library
    9. Levin, A., Glasner, D., Xiong, Y. Durand, F., Freeman, W., Matusik, W., Zickler, T. 2013. Fabricating BRDFs at High Spatial Resolution Using Wave Optics, ACM Trans. Graph 32, 4,144:1–13 Google ScholarDigital Library
    10. Malzbender, T., Samadani, R., Scher, S., Crume, A., Dunn, D., Davis, J. 2012. Printing reflectance functions, ACM Trans. on Graphics 31, 3, 20:1–20:11. Google ScholarDigital Library
    11. Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P. A., Pellacini, F., Rusinkiewicz, S. 2009. Printing Spatially-Varying Reflectance, ACM Trans. Graph. 28, 5, 128:1–128:9. Google ScholarDigital Library
    12. Morovic, J., and Lammens, J. 2007. Color Management, in Colorimetry: Understanding the CIE system, (Ed. J. Schanda), Chapter 7, J. Wiley, 159–206.Google Scholar
    13. Morovic, J., Luo, M. R. 2001. The fundamentals of gamut mapping: A survey, Journal of Imaging Science and Technology 45, 3, 283–290.Google Scholar
    14. Mikula, M., Ceppan, M., Vasko, K. 2003. Gloss and Goniocolorimetry of Printed Materials. Color Research and Application 28, 5, 335–342.Google ScholarCross Ref
    15. Papas, M., Houit, T., Nowrouzezahrai, D., Gross, M., Jarosz, W. 2012. The Magic Lens: Refractive Steganography, ACM Trans. Graph. 31, 6, Article No. 186:1–186:10. Google ScholarDigital Library
    16. Pjanic, P., Hersch, R. D. 2013. Specular color imaging on a metallic substrate, In Proc. IS&T 21st Color Imaging Conference, 61–68.Google Scholar
    17. Rossier, R., Hersch, R. D. 2010. Introducing ink spreading within the cellular Yule-Nielsen modified Neugebauer model, In Proc. IS&T 18th Color Imaging Conference, 295–300.Google Scholar
    18. Sharma, G. 2003. Color fundamentals for digital imaging, in Digital Color Imaging Handbook (G. Sharma Ed.), Chapter 1, CRC Press, 1–114.Google Scholar
    19. Stollnitz, E. J., Ostromoukhov, V., Salesin, D. H. 1998. Reproducing Color Images Using Custom Inks, Proceedings SIGGRAPH 98, Computer Graphics Proceedings, Annual Conference Series, 267–274. Google ScholarDigital Library
    20. Wyscecki G., and Stiles W. S., Color Science, J. Wiley, 1982.Google Scholar
    21. Ye, G., Jolly, S., Bove, V. M. Jr., Dai, Q., Raskar, R., Wetzstein, G. 2014. Toward BxDF display using multilayer diffraction. ACM Trans. Graph. 33, 6, 191:1–191-14. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: