“Codimensional non-Newtonian fluids” by Zhu, Lee, Quigley and Fedkiw

  • ©Bo Zhu, Minjae Lee, Ed Quigley, and Ronald Fedkiw




    Codimensional non-Newtonian fluids



    We present a novel method to simulate codimensional non-Newtonian fluids on simplicial complexes. Our method extends previous work for codimensional incompressible flow to various types of non-Newtonian fluids including both shear thinning and thickening, Bingham plastics, and elastoplastics. We propose a novel time integration scheme for semi-implicitly treating elasticity, which when combined with a semi-implicit method for variable viscosity alleviates the need for small time steps. Furthermore, we propose an improved treatment of viscosity on the rims of thin fluid sheets that allows us to capture their elusive, visually appealing twisting motion. In order to simulate complex phenomena such as the mixing of colored paint, we adopt a multiple level set framework and propose a discretization on simplicial complexes that facilitates the tracking of material interfaces across codimensions. We demonstrate the efficacy of our approach by simulating a wide variety of non-Newtonian fluid phenomena exhibiting various codimensional features.


    1. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. (SIGGRAPH Proc.) 26, 3. Google ScholarDigital Library
    2. Batty, C., and Bridson, R. 2008. Accurate viscous free surfaces for buckling, coiling, and rotating liquids. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics symposium on computer animation, Eurographics Association, 219–228. Google ScholarDigital Library
    3. Batty, C., and Houston, B. 2011. A simple finite volume method for adaptive viscous liquids. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, 111–118. Google ScholarDigital Library
    4. Batty, C., Uribe, A., Audoly, B., and Grinspun, E. 2012. Discrete viscous sheets. ACM Trans. Graph. (SIGGRAPH Proc.) 31, 4, 113. Google ScholarDigital Library
    5. Baxter, B., Scheib, V., Lin, M. C., and Manocha, D. 2001. Dab: interactive haptic painting with 3d virtual brushes. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, 461–468. Google ScholarDigital Library
    6. Baxter, W., Wendt, J., and Lin, M. C. 2004. Impasto: a realistic, interactive model for paint. In Proceedings of the 3rd international symposium on Non-photorealistic animation and rendering, ACM, 45–148. Google ScholarDigital Library
    7. Bergou, M., Audoly, B., Vouga, E., Wardetzky, M., and Grinspun, E. 2010. Discrete viscous threads. ACM Trans. Graph. (SIGGRAPH Proc.) 29, 4, 116. Google ScholarDigital Library
    8. Beverly, C., and Tanner, R. 1992. Numerical analysis of three-dimensional bingham plastic flow. Journal of non-newtonian fluid mechanics 42, 1, 85–115.Google ScholarCross Ref
    9. Bojsen-Hansen, M., Li, H., and Wojtan, C. 2012. Tracking surfaces with evolving topology. ACM Trans. Graph. 31, 4, 53. Google ScholarDigital Library
    10. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 594–603. Google ScholarDigital Library
    11. Carreau, P. J. 1972. Rheological equations from molecular network theories. Transactions of The Society of Rheology (1957–1977) 16, 1, 99–127.Google Scholar
    12. Chu, N. S.-H., and Tai, C.-L. 2005. Moxi: real-time ink dispersion in absorbent paper. In ACM Trans. Graph. (SIGGRAPH Proc.), vol. 24, ACM, 504–511. Google ScholarDigital Library
    13. Chu, N., Baxter, W., Wei, L.-Y., and Govindaraju, N. 2010. Detail-preserving paint modeling for 3d brushes. In Proceedings of the 8th International Symposium on Non-Photorealistic Animation and Rendering, ACM, 27–34. Google ScholarDigital Library
    14. Clavet, S., Beaudoin, P., and Poulin, P. 2005. Particle-based viscoelastic fluid simulation. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., ACM Press, 219–228. Google ScholarDigital Library
    15. Curtis, C. J., Anderson, S. E., Seims, J. E., Fleischer, K. W., and Salesin, D. H. 1997. Computer-generated watercolor. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques, 421–430. Google ScholarDigital Library
    16. Da, F., Batty, C., and Grinspun, E. 2014. Multimaterial mesh-based surface tracking. ACM Trans. Graph. 33, 4, 112:1–112:11. Google ScholarDigital Library
    17. DiVerdi, S., Krishnaswamy, A., Mech, R., and Ito, D. 2013. Painting with polygons: A procedural watercolor engine. Visualization and Computer Graphics, IEEE Transactions on 19, 5, 723–735. Google ScholarDigital Library
    18. Gerszewski, D., Bhattacharya, H., and Bargteil, A. W. 2009. A point-based method for animating elastoplastic solids. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’09, 133–138. Google ScholarDigital Library
    19. Goktekin, T. G., Bargteil, A. W., and O’Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 463–468. Google ScholarDigital Library
    20. Haase, C. S., and Meyer, G. W. 1992. Modeling pigmented materials for realistic image synthesis. ACM Trans. Graph. 11, 4, 305–335. Google ScholarDigital Library
    21. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proc. of the ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 131–140. Google ScholarDigital Library
    22. Kimmel, R., and Sethian, J. A. 1998. Computing geodesic paths on manifolds. Proceedings of the National Academy of Sciences 95, 15, 8431–8435.Google ScholarCross Ref
    23. Lee, S., Olsen, S. C., and Gooch, B. 2006. Interactive 3d fluid jet painting. In Proceedings of the 4th international symposium on Non-photorealistic animation and rendering, ACM, 97–104. Google ScholarDigital Library
    24. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. (SIGGRAPH Proc.) 25, 3, 812–819. Google ScholarDigital Library
    25. Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R. 2008. Two-way coupled SPH and particle level set fluid simulation. IEEE TVCG 14, 4, 797–804. Google ScholarDigital Library
    26. Macklin, M., Müller, M., Chentanez, N., and Kim, T.-Y. 2014. Unified particle physics for real-time applications. ACM Trans. Graph. (SIGGRAPH Proc.) 33, 4, 153:1–153:12. Google ScholarDigital Library
    27. Martin, S., Kaufmann, P., Botsch, M., Grinspun, E., and Gross, M. 2010. Unified simulation of elastic rods, shells, and solids. ACM Trans. Graph. (SIGGRAPH Proc.) 29, 4, 39:1–39:10. Google ScholarDigital Library
    28. Oefner, F., 2013. Orchid. http://fabianoefner.com/?portfolio=orchid.Google Scholar
    29. Okumura, Y. 2005. Developing a spectral and colorimetric database of artist paint materials. Master’s thesis, Rochester Institute of Technology, NY.Google Scholar
    30. Paiva, A., Petronetto, F., Lewiner, T., and Tavares, G. 2009. Particle-based viscoplastic fluid/solid simulation. Computer-Aided Design 41, 4, 306–314. Google ScholarDigital Library
    31. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 193–202. Google ScholarDigital Library
    32. Reynolds, O. 1886. On the theory of lubrication and its application to mr. beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Phil. Trans. Royal Soc. London 177, 157–234.Google ScholarCross Ref
    33. Savva, N. 2007. Viscous fluid sheets. PhD thesis, Massachusetts Institute of Technology.Google Scholar
    34. Selle, A., Lentine, M., and Fedkiw, R. 2008. A mass spring model for hair simulation. ACM Trans. Graph. (SIGGRAPH Proc.) 27, 3 (Aug.), 64.1–64.11. Google ScholarDigital Library
    35. Smereka, P. 2003. Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19, 1, 439–456. Google ScholarDigital Library
    36. Smits, B. 1999. An rgb-to-spectrum conversion for reflectances. Journal of Graphics Tools 4, 4, 11–22. Google ScholarDigital Library
    37. Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A. 2013. A material point method for snow simulation. ACM Trans. Graph. (SIGGRAPH Proc.) 32, 4, 102. Google ScholarDigital Library
    38. Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J., and Selle, A. 2014. Augmented mpm for phase-change and varied materials. ACM Transactions on Graphics (TOG) 33, 4, 138. Google ScholarDigital Library
    39. Wang, H., Mucha, P. J., and Turk, G. 2005. Water drops on surfaces. In ACM Trans. Graph. (SIGGRAPH Proc.), vol. 24, ACM, 921–929. Google ScholarDigital Library
    40. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O’Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. (SIGGRAPH Proc.) 29, 4, 49:1–49:11. Google ScholarDigital Library
    41. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. (SIGGRAPH Proc.) 27, 3, 47. Google ScholarDigital Library
    42. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. In ACM Trans. Graph. (SIGGRAPH Proc.), vol. 28, 76:1–76:10. Google ScholarDigital Library
    43. Xu, J., and Zhao, H. 2003. An Eulerian formulation for solving partial differential equations along a moving interface. J. of Sci. Comput. 19, 1, 573–594. Google ScholarDigital Library
    44. Yasuda, K. 1979. Investigation of the analogies between viscometric and linear viscoelastic properties of polystyrene fluids. PhD thesis, Massachusetts Institute of Technology.Google Scholar
    45. Yu, J., Wojtan, C., Turk, G., and Yap, C. 2012. Explicit mesh surfaces for particle based fluids. Comp. Graph. Forum (Eurographics Proc.) 31, 815–824. Google ScholarDigital Library
    46. Zheng, W., Yong, J.-H., and Paul, J.-C. 2006. Simulation of bubbles. In SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, 325–333. Google ScholarDigital Library
    47. Zhou, Y., Lun, Z., Kalogerakis, E., and Wang, R. 2013. Implicit integration for particle-based simulation of elastoplastic solids. In Computer Graphics Forum, vol. 32, 215–223.Google ScholarCross Ref
    48. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 965–972. Google ScholarDigital Library
    49. Zhu, B., Quigley, E., Cong, M., Solomon, J., and Fedkiw, R. 2014. Codimensional surface tension flow on simplicial complexes. ACM Trans. Graph. (SIGGRAPH Proc.) 33, 4, 111:1–111:11. Google ScholarDigital Library

ACM Digital Library Publication: