“Circular arc structures” by Bo, Pottmann, Kilian, Wang and Wallner

  • ©Pengbo Bo, Helmut Pottmann, Martin Kilian, Wenping Wang, and Johannes Wallner




    Circular arc structures



    The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly three-dimensional designs.


    1. Alexa, M., Cohen-Or, D., and Levin, D. 2000. As-rigid-as-possible shape interpolation. In Proceedings of SIGGRAPH 2000, K. Akeley, Ed., 157–164. Google Scholar
    2. Bishop, R. L. 1975. There is more than one way to frame a curve. Amer. Math. Monthly 82, 246–251.Google ScholarCross Ref
    3. Bobenko, A. I., and Huhnen-Venedey, E. 2011. Curvature line parametrized surfaces and orthogonal coordinate systems. Discretization with Dupin cyclides. arXiv preprint 1101.5955.Google Scholar
    4. Bobenko, A., and Schröder, P. 2005. Discrete Willmore flow. In Symp. Geometry Processing, M. Desbrun and H. Pottmann, Eds., Eurographics, 101–110. Google ScholarDigital Library
    5. Bobenko, A., and Suris, Yu. 2008. Discrete differential geometry: Integrable Structure. American Math. Soc.Google Scholar
    6. Cecil, T. 1992. Lie Sphere Geometry. Springer.Google Scholar
    7. Degen, W. 2002. Cyclides. In Handbook of Computer Aided Geometric Design, G. Farin, J. Hoschek, and M.-S. Kim, Eds. Elsevier, 575–601.Google Scholar
    8. do Carmo, M. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall.Google Scholar
    9. Eigensatz, M., Kilian, M., Schiftner, A., Mitra, N., Pottmann, H., and Pauly, M. 2010. Paneling architectural freeform surfaces. ACM Trans. Graphics 29, 4, #45, 1–10. Google ScholarDigital Library
    10. Farin, G., Hoschek, J., and Kim, M.-S., Eds. 2002. Handbook of Computer Aided Geometric Design. Elsevier.Google Scholar
    11. Fu, C.-W., Lai, C.-F., He, Y., and Cohen-Or, D. 2010. K-set tilable surfaces. ACM Trans. Graphics 29, 4, #44, 1–6. Google ScholarDigital Library
    12. Gu, X. D., and Yau, S.-T. 2008. Computational Conformal Geometry. International Press.Google Scholar
    13. Hertrich-Jeromin, U. 2003. Introduction to Möbius differential geometry. Cambridge University Press.Google Scholar
    14. Huhnen-Venedey, E. 2007. Curvature line parametrized surfaces and orthogonal coordinate systems. Discretization with Dupin cyclides. Master’s thesis, TU Berlin.Google Scholar
    15. Kelley, C. T. 1999. Iterative Methods for Optimization. SIAM.Google Scholar
    16. Leopoldseder, S. 2001. Algorithms on cone spline surfaces and spatial osculating arc splines. Comput. Aided Geom. Design 18, 505–530. Google ScholarCross Ref
    17. Liu, Y., Pottmann, H., Wallner, J., Yang, Y.-L., and Wang, W. 2006. Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graphics 25, 3, 681–689. Google ScholarDigital Library
    18. Martin, R. R., de Pont, J., and Sharrock, T. J. 1986. Cyclide surfaces in computer aided design. In The Mathematics of Surfaces, J. A. Gregory, Ed. Clarendon Press, Oxford, 253–268.Google Scholar
    19. Pottmann, H., Liu, Y., Wallner, J., Bobenko, A., and Wang, W. 2007. Geometry of multi-layer freeform structures for architecture. ACM Trans. Graphics 26, 3, #65, 1–11. Google ScholarDigital Library
    20. Pottmann, H., Schiftner, A., Bo, P., Schmiedhofer, H., Wang, W., Baldassini, N., and Wallner, J. 2008. Free-form surfaces from single curved panels. ACM Trans. Graphics 27, 3, #76, 1–10. Google ScholarDigital Library
    21. Pottmann, H., Huang, Q., Deng, B., Schiftner, A., Kilian, M., Guibas, L., and Wallner, J. 2010. Geodesic patterns. ACM Trans. Graphics 29, 4, #43, 1–10. Google ScholarDigital Library
    22. Pratt, M. J. 1995. Cyclides in computer aided geometric design II. Comput. Aided Geom. Design 12, 131–152. Google ScholarDigital Library
    23. Sauer, R. 1970. Differenzengeometrie. Springer.Google Scholar
    24. Schiftner, A., and Balzer, J. 2010. Statics-sensitive layout of planar quadrilateral meshes. In Advances in Architectural Geometry 2010, C. Ceccato et al., Eds. Springer, 221–236.Google Scholar
    25. Schiftner, A., Höbinger, M., Wallner, J., and Pottmann, H. 2009. Packing circles and spheres on surfaces. ACM Trans. Graphics 28, 5, #139, 1–8. Google ScholarDigital Library
    26. Singh, M., and Schaefer, S. 2010. Triangle surfaces with discrete equivalence classes. ACM Trans. Graphics 29, 4, #46, 1–7. Google ScholarDigital Library
    27. Song, X., Aigner, M., Chen, F, and Jüttler, B. 2009. Circular spline fitting using an evolution process. J. Comp. Appl. Math. 231, 423–433. Google ScholarDigital Library
    28. Toledo, S., 2003. TAUCS, a library of sparse linear solvers. C library, http.//www.tau.ac.il/~stoledo/taucs/.Google Scholar
    29. Walton, D. J., and Meek, D. S. 1995. Approximating smooth planar curves by arc splines. J. Comp. Appl. Math 59, 221–231. Google ScholarDigital Library
    30. Zeng, W., Yin, X., Zhang, M., Luo, F., and Gu, X. D. 2009. Generalized Koebe’s method for conformal mapping multiply connected domains. In Proc. Geom. Phys. Modeling, 89–100. Google Scholar

ACM Digital Library Publication:

Overview Page: