“Bounded distortion harmonic mappings in the plane” by Chen and Weber
Conference:
Type(s):
Title:
- Bounded distortion harmonic mappings in the plane
Presenter(s)/Author(s):
Abstract:
We present a framework for the computation of harmonic and conformal mappings in the plane with mathematical guarantees that the computed mappings are C∞, locally injective and satisfy strict bounds on the conformal and isometric distortion. Such mappings are very desirable in many computer graphics and geometry processing applications.We establish the sufficient and necessary conditions for a harmonic planar mapping to have bounded distortion. Our key observation is that these conditions relate solely to the boundary behavior of the mapping. This leads to an efficient and accurate algorithm that supports handle-based interactive shape-and-image deformation and is demonstrated to outperform other state-of-the-art methods.
References:
1. Ahlfors, L. 1966. Lectures on quasiconformal mappings, vol. 38. Amer. Mathematical Society.Google Scholar
2. Aigerman, N., Poranne, R., and Lipman, Y. 2014. Lifted bijections for low distortion surface mappings. ACM Transactions on Graphics (TOG) 33, 4, 69. Google ScholarDigital Library
3. Bell, S. R. 1992. The Cauchy transform, potential theory and conformal mapping, vol. 7. CRC press.Google Scholar
4. Ben-Chen, M., Weber, O., and Gotsman, C. 2009. Variational harmonic maps for space deformation. ACM Transactions on Graphics (TOG) 28, 3, 34. Google ScholarDigital Library
5. Duren, P. 2004. Harmonic mappings in the plane. Cambridge University Press.Google Scholar
6. Floater, M. S., and Kosinka, J. 2010. On the injectivity of wachspress and mean value mappings between convex polygons. Advances in Computational Mathematics 32, 2, 163–174.Google ScholarCross Ref
7. Floater, M. S., Kós, G., and Reimers, M. 2005. Mean value coordinates in 3d. Computer Aided Geometric Design 22, 7, 623–631. Google ScholarDigital Library
8. Hormann, K., and Floater, M. S. 2006. Mean value coordinates for arbitrary planar polygons. ACM Transactions on Graphics (TOG) 25, 4, 1424–1441. Google ScholarDigital Library
9. Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM transactions on Graphics (TOG) 24, 3, 1134–1141. Google ScholarDigital Library
10. Jacobson, A. 2013. Bijective mappings with generalized barycentric coordinates: a counterexample. Journal of Graphics Tools 17, 1-2, 1–4.Google ScholarCross Ref
11. Joshi, P., Meyer, M., DeRose, T., and Green, B. 2007. Harmonic coordinates for character articulation. In ACM Transactions on Graphics (TOG), vol. 26, 71. Google ScholarDigital Library
12. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. In ACM Transactions on Graphics (TOG), vol. 24, 561–566. Google ScholarDigital Library
13. Kharevych, L., Springborn, B., and Schröder, P. 2006. Discrete conformal mappings via circle patterns. ACM Trans. Graph. 25, 2, 412–438. Google ScholarDigital Library
14. Kovalsky, S. Z., Aigerman, N., Basri, R., and Lipman, Y. 2014. Controlling singular values with semidefinite programming. ACM Transactions on Graphics (TOG), 4. Google ScholarDigital Library
15. Levi, Z., and Zorin, D. 2014. Strict minimizers for geometric optimization. ACM Transactions on Graphics (TOG) 33, 6, 185. Google ScholarDigital Library
16. Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Transactions on Graphics (TOG) 21, 3, 362–371. Google ScholarDigital Library
17. Lipman, Y., Levin, D., and Cohen-Or, D. 2008. Green coordinates. In ACM Transactions on Graphics (TOG), vol. 27, 78. Google ScholarDigital Library
18. Lipman, Y. 2012. Bounded distortion mapping spaces for triangular meshes. ACM Transactions on Graphics (TOG) 31, 4, 108. Google ScholarDigital Library
19. Liu, L., Zhang, L., Xu, Y., Gotsman, C., and Gortler, S. 2008. A local/global approach to mesh parameterization. In Computer Graphics Forum, vol. 27, Wiley Online Library, 1495–1504. Google ScholarDigital Library
20. Poranne, R., and Lipman, Y. 2014. Provably good planar mappings. ACM Transactions on Graphics (TOG) 33, 4, 76. Google ScholarDigital Library
21. Schneider, T., Hormann, K., and Floater, M. S. 2013. Bijective composite mean value mappings. In Computer Graphics Forum, vol. 32, Wiley Online Library, 137–146. Google ScholarDigital Library
22. Schüller, C., Kavan, L., Panozzo, D., and Sorkine-Hornung, O. 2013. Locally injective mappings. In Computer Graphics Forum, vol. 32, Wiley Online Library, 125–135. Google ScholarDigital Library
23. Sheffer, A., and de Sturler, E. 2001. Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening. Engineering with Computers 17, 3, 326–337.Google ScholarCross Ref
24. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proceedings of EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing, 109–116. Google ScholarDigital Library
25. Springborn, B., Schröder, P., and Pinkall, U. 2008. Conformal equivalence of triangle meshes. ACM Transactions on Graphics (TOG) 27, 3, 77. Google ScholarDigital Library
26. Weber, O., and Gotsman, C. 2010. Controllable conformal maps for shape deformation and interpolation. ACM Transactions on Graphics (TOG) 29, 4, 78. Google ScholarDigital Library
27. Weber, O., and Zorin, D. 2014. Locally injective parametrization with arbitrary fixed boundaries. ACM Transactions on Graphics (TOG) 33, 4, 75. Google ScholarDigital Library
28. Weber, O., Sorkine, O., Lipman, Y., and Gotsman, C. 2007. Context-aware skeletal shape deformation. In Computer Graphics Forum, vol. 26, Wiley Online Library, 265–274.Google Scholar
29. Weber, O., Ben-Chen, M., and Gotsman, C. 2009. Complex barycentric coordinates with applications to planar shape deformation. In Computer Graphics Forum, vol. 28, Wiley Online Library, 587–597.Google Scholar
30. Weber, O., Ben-Chen, M., Gotsman, C., and Hormann, K. 2011. A complex view of barycentric mappings. In Computer Graphics Forum, vol. 30, Wiley Online Library, 1533–1542.Google Scholar
31. Weber, O., Myles, A., and Zorin, D. 2012. Computing extremal quasiconformal maps. In Computer Graphics Forum, vol. 31, Wiley Online Library, 1679–1689. Google ScholarDigital Library
32. Weber, O., Poranne, R., and Gotsman, C. 2012. Biharmonic coordinates. In Computer Graphics Forum, vol. 31,Wiley Online Library, 2409–2422. Google ScholarDigital Library
33. Weber, O. 2010. Hybrid Methods for Interactive Shape Manipulation. PhD thesis, Technion – Israel Institute of Technology.Google Scholar
34. Zayer, R., Rössl, C., Karni, Z., and Seidel, H.-P. 2005. Harmonic guidance for surface deformation. In Computer Graphics Forum, vol. 24, Wiley Online Library, 601–609.Google Scholar