“Blending liquids” by Raveendran, Wojtan, Thuerey and Turk

  • ©Karthik Raveendran, Chris Wojtan, Nils Thuerey, and Greg Turk

Conference:


Type(s):


Title:

    Blending liquids

Session/Category Title:   Fluids


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We present a method for smoothly blending between existing liquid animations. We introduce a semi-automatic method for matching two existing liquid animations, which we use to create new fluid motion that plausibly interpolates the input. Our contributions include a new space-time non-rigid iterative closest point algorithm that incorporates user guidance, a subsampling technique for efficient registration of meshes with millions of vertices, and a fast surface extraction algorithm that produces 3D triangle meshes from a 4D space-time surface. Our technique can be used to instantly create hundreds of new simulations, or to interactively explore complex parameter spaces. Our method is guaranteed to produce output that does not deviate from the input animations, and it generalizes to multiple dimensions. Because our method runs at interactive rates after the initial precomputation step, it has potential applications in games and training simulations.

References:


    1. Amberg, B., Romdhani, S., and Vetter, T. 2007. Optimal step nonrigid ICP algorithms for surface registration. In IEEE Conf. Computer Vision and Pattern Recognition, CVPR ’07, 1–8. Google ScholarDigital Library
    2. Autodesk, 2013. Maya software.Google Scholar
    3. Besl, P. J., and McKay, N. D. 1992. A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 2 (Feb.), 239–256. Google ScholarDigital Library
    4. Bojsen-Hansen, M., Li, H., and Wojtan, C. 2012. Tracking surfaces with evolving topology. ACM Trans. Graph. 31, 4 (July), 53:1–53:10. Google ScholarDigital Library
    5. Breen, D. E., and Whitaker, R. T. 2001. A level-set approach for the metamorphosis of solid models. IEEE Trans. Visualization and Computer Graphics 7, 2 (Apr.), 173–192. Google ScholarDigital Library
    6. Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Trans. Graph. 29, 4 (July), 47:1–47:9. Google ScholarDigital Library
    7. Brown, B., and Rusinkiewicz, S. 2007. Global non-rigid alignment of 3-D scans. ACM Trans. Graph. 26, 3 (Aug.). Google ScholarDigital Library
    8. Cohen-Or, D., Solomovic, A., and Levin, D. 1998. Three-dimensional distance field metamorphosis. ACM Trans. Graph. 17, 2 (Apr.), 116–141. Google ScholarDigital Library
    9. Enright, D., Nguyen, D., Gibou, F., and Fedkiw, R. 2003. Using the Particle Level Set Method and a Second Order Accurate Pressure Boundary Condition for Free-Surface Flows. Proc. Joint Fluids Engineering Conference.Google Scholar
    10. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models Image Process. 58, 5 (Sept.), 471–483. Google ScholarDigital Library
    11. Gelfand, N., Ikemoto, L., Rusinkiewicz, S., and Levoy, M. 2003. Geometrically stable sampling for the ICP algorithm. In Int. Conference on 3D Digital Imaging and Modeling (3DIM). Google ScholarDigital Library
    12. Gelfand, N., Mitra, N. J., Guibas, L. J., and Pottmann, H. 2005. Robust global registration. In Symposium on Geometry Processing, Eurographics Association, SGP ’05. Google ScholarDigital Library
    13. Hähnel, D., Thrun, S., and Burgard, W. 2003. An extension of the ICP algorithm for modeling nonrigid objects with mobile robots. In Proc. of the Int. Joint Conference on Artificial Intelligence, IJCAI. Google ScholarDigital Library
    14. Klein, A. W., Sloan, P.-P. J., Finkelstein, A., and Cohen, M. F. 2002. Stylized video cubes. In ACM SIGGRAPH Symposium on Computer Animation, 15–22. Google ScholarDigital Library
    15. Kwatra, V., and Rossignac, J. 2002. Space-time surface simplification and edgebreaker compression for 2d cel animations. Int. Journal of Shape Modeling 8, 2, 119–137.Google ScholarCross Ref
    16. Li, H., Adams, B., Guibas, L. J., and Pauly, M. 2009. Robust single-view geometry and motion reconstruction. ACM Trans. Graph. 28, 5 (Dec.), 175:1–175:10. Google ScholarDigital Library
    17. Li, H., Luo, L., Vlasic, D., Peers, P., Popović, J., Pauly, M., and Rusinkiewicz, S. 2012. Temporally coherent completion of dynamic shapes. ACM Trans. Graph. 31, 1 (Feb.), 2:1–2:11. Google ScholarDigital Library
    18. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Trans. Graph. 23 (August), 449–456. Google ScholarDigital Library
    19. Misztal, M. K., Erleben, K., Bargteil, A., Fursund, J., Christensen, B. B., Bærentzen, J. A., and Bridson, R. 2012. Multiphase flow of immiscible fluids on unstructured moving meshes. In Proc. Symposium on Computer Animation, Eurographics Association, SCA ’12, 97–106. Google ScholarDigital Library
    20. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proc. Symposium on Computer Animation, Eurographics Association, 154–159. Google ScholarDigital Library
    21. Nielsen, M. B., and Bridson, R. 2011. Guide shapes for high resolution naturalistic liquid simulation. ACM, New York, NY, USA, vol. 30, 83:1–83:8. Google ScholarDigital Library
    22. Osher, S., and Fedkiw, R. 2002. Level set methods and dynamic implicit surfaces. Springer Verlag.Google Scholar
    23. Pan, Z., Huang, J., Tong, Y., Zheng, C., and Bao, H. 2013. Interactive localized liquid motion editing. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 32, 6 (Nov.). Google ScholarDigital Library
    24. Papazov, C., and Burschka, D. 2011. Deformable 3d shape registration based on local similarity transforms. Computer Graphics Forum 30, 5, 1493–1502.Google ScholarCross Ref
    25. Raveendran, K., Thuerey, N., Wojtan, C., and Turk, G. 2012. Controlling liquids using meshes. In Proce. Symposium on Computer Animation, Eurographics Association, SCA ’12, 255–264. Google ScholarDigital Library
    26. Rusinkiewicz, S., and Levoy, M. 2001. Efficient variants of the icp algorithm. In Proc. 3D Digital Imaging and Modeling, 145–152.Google Scholar
    27. Schmid, J., Sumner, R. W., Bowles, H., and Gross, M. 2010. Programmable motion effects. ACM Trans. Graph. 29, 4 (July), 57:1–57:9. Google ScholarDigital Library
    28. Shi, L., and Yu, Y. 2005. Taming liquids for rapidly changing targets. In Symposium on Computer animation, ACM, SCA ’05, 229–236. Google ScholarDigital Library
    29. Solenthaler, B., and Pajarola, R. 2009. Predictive-corrective incompressible sph. ACM Trans. Graph. 28, 3 (July), 40:1–40:6. Google ScholarDigital Library
    30. Stam, J. 1999. Stable fluids. In Proc. SIGGRAPH, ACM, 121–128. Google ScholarDigital Library
    31. Sumner, R. W., Schmid, J., and Pauly, M. 2007. Embedded deformation for shape manipulation. In ACM SIGGRAPH 2007 Papers, ACM, New York, NY, USA, SIGGRAPH ’07. Google ScholarDigital Library
    32. Szeliski, R. 1996. Matching 3-d anatomical surfaces with non-rigid deformations using octree-splines. Int. Journal of Computer Vision 18, 171–186. Google ScholarDigital Library
    33. Taubin, G. 1995. A signal processing approach to fair surface design. In Proceedings of SIGGRAPH 95, Annual Conference Series, 351–358. Google ScholarDigital Library
    34. Tevs, A., Berner, A., Wand, M., Ihrke, I., Bokeloh, M., Kerber, J., and Seidel, H.-P. 2012. Animation cartography-intrinsic reconstruction of shape and motion. ACM Transactions on Graphics (TOG) 31, 2, 12. Google ScholarDigital Library
    35. Thuerey, N., Keiser, R., Ruede, U., and Pauly, M. 2006. Detail-Preserving Fluid Control. Symposium on Computer Animation (Jun), 7–12. Google ScholarDigital Library
    36. Turk, G., and O’Brien, J. F. 1999. Shape transformation using variational implicit functions. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH ’99, 335–342. Google ScholarDigital Library
    37. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2010. Physics-inspired topology changes for thin fluid features. ACM Trans. Graph. 29 (July), 50:1–50:8. Google ScholarDigital Library
    38. Yu, J., and Turk, G. 2010. Reconstructing surfaces of particle-based fluids using anisotropic kernels. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, 217–225. Google ScholarDigital Library
    39. Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., and Paragios, N. 2010. Dense non-rigid surface registration using high-order graph matching. In IEEE Conf. Computer Vision and Pattern Recognition, CVPR 2010, 382–389.Google Scholar
    40. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3 (July), 965–972. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: