“Automatic rigging and animation of 3D characters” by Baran and Popović

  • ©Ilya Baran and Jovan Popović




    Automatic rigging and animation of 3D characters



    Animating an articulated 3D character currently requires manual rigging to specify its internal skeletal structure and to define how the input motion deforms its surface. We present a method for animating characters automatically. Given a static character mesh and a generic skeleton, our method adapts the skeleton to the character and attaches it to the surface, allowing skeletal motion data to animate the character. Because a single skeleton can be used with a wide range of characters, our method, in conjunction with a library of motions for a few skeletons, enables a user-friendly animation system for novices and children. Our prototype implementation, called Pinocchio, typically takes under a minute to rig a character on a modern midrange PC.


    1. Anderson, D., Frankel, J. L., Marks, J., Agarwala, A., Beardsley, P., Hodgins, J., Leigh, D., Ryall, K., Sullivan, E., and Yedidia, J. S. 2000. Tangible interaction + graphical interpretation: a new approach to 3d modeling. In Proceedings of ACM SIGGRAPH 2000, Annual Conference Series, 393–402. Google ScholarDigital Library
    2. Arikan, O., Forsyth, D. A., and O’Brien, J. F. 2003. Motion synthesis from annotations. ACM Transactions on Graphics 22, 3 (July), 402–408. Google ScholarDigital Library
    3. Baran, I., and Popović, J., 2007. Penalty functions for automatic rigging and animation of 3d characters. http://people.csail.mit.edu/ibaran/penalty.pdf. Google ScholarDigital Library
    4. Baran, I., and Popović, J., 2007. Pinocchio results video. http://people.csail.mit.edu/ibaran/pinocchio.avi.Google Scholar
    5. Botsch, M., Bommes, D., and Kobbelt, L. 2005. Efficient linear system solvers for mesh processing. In IMA Conference on the Mathematics of Surfaces, 62–83. Google ScholarDigital Library
    6. Burges, C. 1998. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2, 2, 121–167. Google ScholarDigital Library
    7. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. Interactive skeleton-driven dynamic deformation. ACM Transactions on Graphics 21, 3 (Aug.), 586–593. Google ScholarDigital Library
    8. Choi, K.-J., and Ko, H.-S. 2000. Online motion retargetting. Journal of Visualization and Computer Animation 11, 5 (Dec.), 223–235.Google ScholarCross Ref
    9. Frisken, S. F., Perry, R. N., Rockwood, A. P., and Jones, T. R. 2000. Adaptively sampled distance fields: A general representation of shape for computer graphics. In Proceedings of ACM SIGGRAPH 2000, Annual Conference Series, 249–254. Google ScholarDigital Library
    10. Gill, P. E., Murray, W., and Wright, M. H. 1989. Practical Optimization. Academic Press, London.Google Scholar
    11. Gleicher, M. 2001. Comparing contraint-based motion editing methods. Graphical Models 63 (Aug.), 107–134. Google ScholarDigital Library
    12. Gold, S., and Rangarajan, A. 1996. A graduated assignment algorithm for graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 4, 377–388. Google ScholarDigital Library
    13. Igarashi, T., Matsuoka, S., and Tanaka, H. 1999. Teddy: A sketching interface for 3d freeform design. In Proceedings of ACM SIGGRAPH 1999, Annual Conference Series, 409–416. Google ScholarDigital Library
    14. Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM Transactions on Graphics 24, 3 (Aug.), 1134–1141. Google ScholarDigital Library
    15. Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. Spatial keyframing for performance-driven animation. In Symposium on Computer Animation (SCA), 107–115. Google ScholarDigital Library
    16. Jaromczyk, J. W., and Toussaint, G. T. 1992. Relative neighborhood graphs and their relatives. Proceedings of IEEE 80, 9 (Sept.), 1502–1517.Google ScholarCross Ref
    17. Katz, S., and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics 22, 3 (Aug.), 954–961. Google ScholarDigital Library
    18. Kavan, L., and Žára, J. 2005. Spherical blend skinning: A real-time deformation of articulated models. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 9–16. Google ScholarDigital Library
    19. Kry, P. G., James, D. L., and Pai, D. K. 2002. EigenSkin: Real time large deformation character skinning in hardware. In Symposium on Computer Animation (SCA), 153–160. Google ScholarDigital Library
    20. Lipman, Y., Sorkine, O., Levin, D., and Cohen-Or, D. 2005. Linear rotation-invariant coordinates for meshes. ACM Transactions on Graphics 24, 3 (Aug.), 479–487. Google ScholarDigital Library
    21. Liu, P.-C., Wu, F.-C., Ma, W.-C., Liang, R.-H., and Ouhyoung, M. 2003. Automatic animation skeleton using repulsive force field. In 11th Pacific Conference on Computer Graphics and Applications, 409–413. Google ScholarDigital Library
    22. Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. 2003. Discrete differential-geometry operators for triangulated 2-manifolds. In Visualization and Mathematics III. Springer-Verlag, Heidelberg, 35–57.Google Scholar
    23. Moccozet, L., Dellas, F., Magnenat-Thalmann, N., Biasotti, S., Mortara, M., Falcidieno, B., Min, P., and Veltkamp, R. 2004. Animatable human body model reconstruction from 3d scan data using templates. In CapTech Workshop on Modelling and Motion Capture Techniques for Virtual Environments, 73–79.Google Scholar
    24. Nelder, J., and Mead, R. 1965. A simplex method for function minimization. Computer Journal 7, 308–313.Google ScholarCross Ref
    25. Taskar, B., Guestrin, C., and Koller, D. 2003. Max-margin markov networks. In Advances in Neural Information Processing Systems (NIPS 2003).Google Scholar
    26. Teichmann, M., and Teller, S. 1998. Assisted articulation of closed polygonal models. In Computer Animation and Simulation ’98, 87–102.Google Scholar
    27. Thorne, M., Burke, D., and van de Panne, M. 2004. Motion doodles: an interface for sketching character motion. ACM Transactions on Graphics 23, 3 (Aug.), 424–431. Google ScholarDigital Library
    28. Toledo, S., 2003. TAUCS: A library of sparse linear solvers. version 2.2. http://www.tau.ac.il/~stoledo/taucs.Google Scholar
    29. Wade, L. 2000. Automated generation of control skeletons for use in animation. PhD thesis, The Ohio State University. Google ScholarDigital Library
    30. Wang, R., Pulli, K., and Popović, J. 2007. Real-time enveloping with rotational regression. ACM Transactions on Graphics 26, 3. In press. Google ScholarDigital Library
    31. Yu, Y., Zhou, K., Xu, D., Shi, X., Bag, H., Guo, B., and Shum, H.-Y. 2004. Mesh editing with poisson-based gradient field manipulation. ACM Transactions on Graphics 23, 3 (Aug.), 644–651. Google ScholarDigital Library
    32. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., and Shum, H.-Y. 2005. Large mesh deformation using the volumetric graph laplacian. ACM Transactions on Graphics 24, 3 (Aug.), 496–503. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: