“Artist-directed dynamics for 2D animation”

  • ©Yunfei Bai, Danny M. Kaufman, Karen Liu, and Jovan Popović




    Artist-directed dynamics for 2D animation





    Animation artists enjoy the benefits of simulation but do not want to be held back by its constraints. Artist-directed dynamics seeks to resolve this need with a unified method that combines simulation with classical keyframing techniques. The combination of these approaches improves upon both extremes: simulation becomes more customizable and keyframing becomes more automatic. Examining our system in the context of the twelve fundamental animation principles reveals that it stands out for its treatment of exaggeration and appeal. Our system accommodates abrupt jumps, large plastic deformations, and makes it easy to reuse carefully crafted animations.


    1. Alexa, M., Cohen-Or, D., and Levin, D. 2000. As-rigid-as-possible shape interpolation. In Proceedings of ACM SIGGRAPH 2000, Annual Conference Series, 157–164. Google ScholarDigital Library
    2. Barbič, J., Sin, F., and Grinspun, E. 2012. Interactive editing of deformable simulations. ACM Transactions on Graphics (TOG) 31, 4, 70. Google ScholarDigital Library
    3. Barzel, R., and Barr, A. H. 1988. A modeling system based on dynamic constraints. In Computer Graphics (Proceedings of SIGGRAPH 88), ACM SIGGRAPH, Annual Conference Series, 179–188. Google ScholarDigital Library
    4. Barzel, R., Hughes, J. F., and Wood, D. N. 1996. Plausible motion simulation for computer graphics animation. In Computer Animation and Simulation ’96, Proceedings of the Eurographics Workshop, 184–197. Google ScholarDigital Library
    5. Bergou, M., Mathur, S., Wardetzky, M., and Grinspun, E. 2007. TRACKS: Toward directable thin shells. ACM Transactions on Graphics 26, 3 (July), 50:1–50:10. Google ScholarDigital Library
    6. Blair, P. 1994. Cartoon Animation. Walter Foster Publishing.Google Scholar
    7. Bouaziz, S., Martin, S., Liu, T., Kavan, L., and Pauly, M. 2014. Projective dynamics: fusing constraint projections for fast simulation. ACM Transactions on Graphics (TOG) 33, 4, 154. Google ScholarDigital Library
    8. Chenney, S., and Forsyth, D. A. 2000. Sampling plausible solutions to multi-body constraint problems. In Proceedings of ACM SIGGRAPH 2000, Annual Conference Series, 219–228. Google ScholarDigital Library
    9. Coros, S., Martin, S., Thomaszewski, B., Schumacher, C., Sumner, R., and Gross, M. 2012. Deformable objects alive! ACM Transactions on Graphics 31, 4, 69:1–69:9. Google ScholarDigital Library
    10. Faure, F., Gilles, B., Bousquet, G., and Pai, D. K. 2011. Sparse meshless models of complex deformable solids. ACM transactions on graphics (TOG) 30, 4, 73. Google ScholarDigital Library
    11. Gilles, B., Bousquet, G., Faure, F., and Pai, D. K. 2011. Frame-based elastic models. ACM transactions on graphics (TOG) 30, 2, 15. Google ScholarDigital Library
    12. Ha, S., McCann, J., Liu, C. K., and Popovic, J. 2013. Physics storyboard. Computer Graphics Forum (Eurographics) 32.Google Scholar
    13. Hahn, F., Martin, S., Thomaszewski, B., Sumner, R., Coros, S., and Gross, M. 2012. Rig-space physics. ACM Transactions on Graphics 31, 4, 72:1–72:8. Google ScholarDigital Library
    14. Hildebrandt, K., Schulz, C., von Tycowicz, C., and Polthier, K. 2012. Interactive spacetime control of deformable objects. ACM Transactions on Graphics (TOG) 31, 4, 71. Google ScholarDigital Library
    15. Jacobson, A., Baran, I., Popovic, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4, 78. Google ScholarDigital Library
    16. Jacobson, A., Baran, I., Kavan, L., Popović, J., and Sorkine, O. 2012. Fast automatic skinning transformations. ACM Trans. Graph. 31, 4 (July), 77:1–77:10. Google ScholarDigital Library
    17. Jones, B., Popovic, J., McCann, J., Li, W., and Bargteil, A. 2013. Dynamic sprites. In Proceedings of Motion on Games, ACM, New York, NY, USA, MIG ’13, 17:39–17:46. Google ScholarDigital Library
    18. Kass, M., and Anderson, J. 2008. Animating oscillatory motion with overlap: wiggly splines. In ACM Transactions on Graphics (TOG), vol. 27, ACM, 28. Google ScholarDigital Library
    19. Koyama, Y., Takayama, K., Umetani, N., and Igarashi, T. 2012. Real-time example-based elastic deformation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, SCA ’12, 19–24. Google ScholarDigital Library
    20. Liu, C. K., and Popović, Z. 2002. Synthesis of complex dynamic character motion from simple animations. ACM Transactions on Graphics 21, 3 (July), 408–416. Google ScholarDigital Library
    21. Liu, T., Bargteil, A. W., O’Brien, J. F., and Kavan, L. 2013. Fast simulation of mass-spring systems. ACM Transactions on Graphics (TOG) 32, 6, 214. Google ScholarDigital Library
    22. Lodigiani, V., 2013. The illusion of life. http://the12principles.tumblr.com.Google Scholar
    23. Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. 2011. Example-based elastic materials. ACM Trans. Graph. 30, 4 (July), 72:1–72:8. Google ScholarDigital Library
    24. Mosler, J., and Ortiz, M. 2007. Variational h-adaption in finite deformation elasticity and plasticity. International Journal for Numerical Methods in Engineering 72, 5, 505–523.Google ScholarCross Ref
    25. Popović, J., Seitz, S. M., Erdmann, M., Popović, Z., and Witkin, A. 2000. Interactive manipulation of rigid body simulations. In Computer Graphics (Proceedings of SIGGRAPH 2000), ACM SIGGRAPH, Annual Conference Series, 209–218. Google ScholarDigital Library
    26. Schumacher, C., Thomaszewski, B., Coros, S., Martin, S., Sumner, R., and Gross, M. 2012. Efficient simulation of example-based materials. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, SCA ’12, 1–8. Google ScholarDigital Library
    27. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Symposium on Geometry processing, vol. 4. Google ScholarDigital Library
    28. Sumner, R. W., and Popović, J. 2004. Deformation transfer for triangle meshes. ACM Transactions on Graphics 23, 3 (Aug.), 399–405. Google ScholarDigital Library
    29. Sýkora, D., Dingliana, J., and Collins, S. 2009. As-rigid-as-possible image registration for hand-drawn cartoon animations. In Proceedings of International Symposium on Non-photorealistic Animation and Rendering, 25–33. Google ScholarDigital Library
    30. Thomas, F., Johnston, O., and Thomas, F. 1995. The illusion of life: Disney animation. Hyperion New York.Google Scholar
    31. Twigg, C. D., and James, D. L. 2007. Many-worlds browsing for control of multibody dynamics. ACM Transactions on Graphics 26, 3 (July), 14:1–14:8. Google ScholarDigital Library
    32. Wang, Y., Jacobson, A., Barbič, J., and Kavan, L. 2015. Linear subspace design for real-time shape deformation. ACM Transactions on Graphics (TOG) 34, 4, 57. Google ScholarDigital Library
    33. Witkin, A., and Kass, M. 1988. Spacetime constraints. In Computer Graphics (Proceedings of SIGGRAPH 88), vol. 22, 159–168. Google ScholarDigital Library

ACM Digital Library Publication: