“AppWand: editing measured materials using appearance-driven optimization” by Pellacini and Lawrence
Conference:
Type(s):
Title:
- AppWand: editing measured materials using appearance-driven optimization
Presenter(s)/Author(s):
Abstract:
We investigate a new approach to editing spatially- and temporally-varying measured materials that adopts a stroke-based workflow. In our system, a user specifies a small number of editing constraints with a 3-D painting interface which are smoothly propagated to the entire dataset through an optimization that enforces similar edits are applied to areas with similar appearance. The sparse nature of this appearance-driven optimization permits the use of efficient solvers, allowing the designer to interactively refine the constraints. We have found this approach supports specifying a wide range of complex edits that would not be easy with existing techniques which present the user with a fixed segmentation of the data. Furthermore, it is independent of the underlying reflectance model and we show edits to both analytic and non-parametric representations in examples from several material databases.
References:
1. Borg, I. 1996. Modern Multidimensional Scaling: Theory and Applications. Springer.Google Scholar
2. Brand, M. 2002. Charting a manifold. In Proceedings of Neural Information Processing Systems.Google Scholar
3. Colbert, M., Pattanaik, S., and Krivanek, J. 2006. BRDF-Shop: Creating physically correct bidirectional reflectance distribution functions. IEEE Computer Graphics and Applications. Google ScholarDigital Library
4. Cook, R. L., and Torrance, K. E. 1981. A reflectance model for computer graphics. Computer Graphics (SIGGRAPH 1981). Google ScholarDigital Library
5. Goldman, D. B., Curless, B., Hertzmann, A., and Seitz, S. M. 2005. Shape and spatially-varying BRDFs from photometric stereo. In IEEE International Conference on Computer Vision. Google ScholarDigital Library
6. Gu, J., Tu, C.-I., Ramamoorthi, R., Belhumeur, P., Matusik, W., and Nayar, S. 2006. Time-varying surface appearance: Acquisition, modeling and rendering. ACM Transactions on Graphics (SIGGGRAPH 2006) 25, 3. Google ScholarDigital Library
7. Irony, R., Cohen-Or, D., and Lischinski, D. 2005. Colorization by example. In Proceedings of the Eurographics Symposium on Rendering. Google ScholarCross Ref
8. Jain, A. K., Murty, M. N., and Flynn, P. J. 1999. Data clustering: A review. ACM Computing Surveys 31, 3. Google ScholarDigital Library
9. Lafortune, E. P. F, Foo, S.-C., Torrance, K. E., and Greenberg, D. P. 1997. Non-linear approximation of reflectance functions. In Proceedings of ACM SIGGRAPH 1997. Google ScholarDigital Library
10. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material reprsentation and editing. ACM Transactions on Graphics (SIGGRAPH 2006) 25, 3. Google ScholarDigital Library
11. Lefebvre, S., and Hoppe, H. 2006. Appearance-space texture synthesis. ACM Transactions on Graphics (SIGGRAPH 2006) 25, 3. Google ScholarDigital Library
12. Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Transactions on Graphics 22, 2. Google ScholarDigital Library
13. Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. ACM Transactions on Graphics (SIGGRAPH 2004). Google ScholarDigital Library
14. Lischinski, D., Farbman, Z., Uyttendaele, M., and Szeliski, R. 2006. Interactive local adjustment of tonal values. ACM Transactions on Graphics (SIGGRAPH 2006) 25, 3. Google ScholarDigital Library
15. Marschner, S. R., Westin, S. H., Arbree, A., and Moon, J. T. 2005. Measuring and modeling the appearance of finished wood. ACM Transactions on Graphics (SIGGRAPH 2005) 24, 3. Google ScholarDigital Library
16. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Transactions on Graphics (SIGGRAPH 2003) 22, 3. Google ScholarDigital Library
17. Mount, D. M., and Arya, S., 2006. ANN: A library for Approximate Nearest Neighbor searching.Google Scholar
18. Ngan, A., Durand, F., and Matusik, W. 2006. Image-driven navigation of analytical brdf models. In Proceedings of the Eurographics Symposium on Rendering. Google ScholarCross Ref
19. Nicodemus, F. E., Richmond, J. C., and HSIA, J. J. 1977. Geometrical considerations and reflectance. National Bureau of Standards.Google Scholar
20. Peers, P., Vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., and Dutré, P. 2006. A compact factored representation of heterogeneous subsurface scattering. ACM Transactions on Graphics (SIGGRAPH 2006) 25, 3. Google ScholarDigital Library
21. Pellacini, F., Ferwerda, J. A., and Greenberg, D. P. 2000. Toward a psychophysically-based light reflection model for image synthesis. In Proceedings of ACM SIGGRAPH 2000. Google ScholarDigital Library
22. Phong, B. T. 1975. Illumination for computer generated images. Communications of the ACM 18. Google ScholarDigital Library
23. Robert, C. P., and Casella, G. 2004. Monte Carlo Statistical Methods. Springer. Google ScholarDigital Library
24. Roweis, S. T., and Saul, L. K. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science 290, 5500.Google ScholarCross Ref
25. Saad, Y. 2003. Iterative Methods for Sparse Linear Systems, 2 ed. SIAM. Google ScholarDigital Library
26. Tenenbaum, J. B., de Silva, V., and Langford, J. C. 2000. A global geometric framework for nonlinear dimensionality reduction. Science 290, 5500.Google ScholarCross Ref
27. Wang, J., Tong, X., Lin, S., Bao, H., Guo, B., and Shum, H.-Y. 2006. Appearance manifolds for modeling time-variant appearance of materials. ACM Transactions on Graphics (SIGGRAPH 2006) 25, 3. Google ScholarDigital Library
28. Ward, G. J. 1992. Measuring and modeling anisotropic reflection. In Computer Graphics (Proceedings of ACM SIGGRAPH 1992). Google ScholarDigital Library
29. Westlund, H. B., and Meyer, G. W. 2001. Applying appearance standards to light reflection models. In Proceedings of ACM SIGGRAPH 2001. Google ScholarDigital Library