“Antialiasing Complex Global Illumination Effects in Path-Space”

  • ©

Conference:


Type(s):


Title:

    Antialiasing Complex Global Illumination Effects in Path-Space

Session/Category Title:   Rendering in Path Space


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We present the first method to efficiently predict antialiasing footprints to pre-filter color-, normal-, and displacement-mapped appearance in the context of multi-bounce global illumination. We derive Fourier spectra for radiance and importance functions that allow us to compute spatial-angular filtering footprints at path vertices for both uni- and bi-directional path construction. We then use these footprints to antialias reflectance modulated by high-resolution maps (such as color and normal maps) encountered along a path. In doing so, we also unify the traditional path-space formulation of light transport with our frequency-space interpretation of global illumination pre-filtering. Our method is fully compatible with all existing single bounce pre-filtering appearance models, not restricted by path length, and easy to implement atop existing path-space renderers. We illustrate its effectiveness on several radiometrically complex scenarios where previous approaches either completely fail or require orders of magnitude more time to arrive at similarly high-quality results.

References:


    1. Laurent Belcour. 2012. Frequency Analysis of Light Transport: From Theory to Implementation. Ph.D. Dissertation. Grenoble Université.Google Scholar
    2. Laurent Belcour. 2016. Covariance Tracing source code. Retrieved March 2016 from https://github.com/belcour/CovarianceTracing.Google Scholar
    3. Laurent Belcour, Kavita Bala, and Cyril Soler. 2014. A local frequency analysis of light scattering and absorption. ACM Trans. Graph. 33, 5 (2014), 163:1–163:17.Google ScholarDigital Library
    4. Laurent Belcour and Cyril Soler. 2011. Frequency-based kernel estimation for progressive photon mapping. In ACM SIGGRAPH Asia Posters. No. 47. Google ScholarDigital Library
    5. Laurent Belcour, Cyril Soler, Kartic Subr, Nicolas Holzschuch, and Frédo Durand. 2013. 5D covariance tracing for efficient defocus and motion blur. ACM Trans. Graph. 32, 3 (2013), 31:1–31:18.Google ScholarDigital Library
    6. Carles Bosch, Xavier Pueyo, Stéphane Mérillou, and Djamchid Ghazanfarpour. 2004. A physically-based model for rendering realistic scratches. In Computer Graphics Forum, Vol. 23. 361–370. Google ScholarCross Ref
    7. Carles Bosch, Xavier Pueyo, Stéphane Mérillou, and Djamchid Ghazanfarpour. 2008. A resolution independent approach for the accurate rendering of grooved surfaces. In Computer Graphics Forum, Vol. 27. 1937–1944. Google ScholarCross Ref
    8. Eric Bruneton and Fabrice Neyret. 2012. A survey of non-linear pre-filtering methods for efficient and accurate surface shading. IEEE Transactions on Visualization and Computer Graphics 18, 2 (Feb. 2012), 242–260. Google ScholarDigital Library
    9. Min Chen and Jim Arvo. 2000. Theory and application of specular path perturbation. ACM Trans. Graph. 19, 1 (Oct. 2000), 246–278. Google ScholarDigital Library
    10. Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eisemann. 2009. GigaVoxels. In ACM Symposium on Interactive 3D Graphics and Games.Google Scholar
    11. Jonathan Dupuy, Eric Heitz, Jean-Claude Iehl, Pierre Poulin, Fabrice Neyret, and Victor Ostromoukhov. 2013. Linear efficient antialiased displacement and reflectance mapping. ACM Trans. Graph. 32, 6 (Nov. 2013), 1–11. Google ScholarDigital Library
    12. Frédo Durand, Nicolas Holzschuch, Cyril Soler, Eric Chan, and François X. Sillion. 2005. A frequency analysis of light transport. ACM Trans. Graph. 24, 3 (2005), 1115–1126. Google ScholarDigital Library
    13. Oskar Elek, Pablo Bauszat, Tobias Ritschel, Marcus Magnor, and Hans-Peter Seidel. 2014. Progressive spectral ray differentials. In Proc. Vision, Modeling and Visualization. 151–158.Google Scholar
    14. Alain Fournier. 1992. Filtering Normal Maps and Creating Multiple Surfaces. Technical Report TR-92-41. Department of Computer Science, University of British Columbia, Vancouver, BC, Canada.Google ScholarDigital Library
    15. Charles Han, Bo Sun, Ravi Ramamoorthi, and Eitan Grinspun. 2007. Frequency domain normal map filtering. ACM Trans. Graph. 26, 3 (2007), 28. Google ScholarDigital Library
    16. Paul S. Heckbert. 1986. Survey of texture mapping. Comput. Graph. Appl. 6, 11 (1986), 56–67. Google ScholarDigital Library
    17. Paul S. Heckbert and Pat Hanrahan. 1984. Beam tracing polygonal objects. ACM SIGGRAPH Comput. Graph. 18, 3 (1984), 119–127. Google ScholarDigital Library
    18. Homan Igehy. 1999. Tracing ray differentials. In ACM SIGGRAPH 1999. Google ScholarDigital Library
    19. Wenzel Jakob. 2010. Mitsuba renderer. Retrieved from http://www.mitsuba-renderer.org.Google Scholar
    20. Wenzel Jakob, Miloš Hašan, Ling-qi Yan, Jason Lawrence, Ravi Ramamoorthi, and Stephen Marschner. 2014. Discrete stochastic microfacet models. ACM Trans. Graph. 33, 4 (2014), 115:1–115:10.Google ScholarDigital Library
    21. James T. Kajiya. 1986. The rendering equation. In ACM SIGGRAPH, Vol. 20. Google ScholarDigital Library
    22. Anton S. Kaplanyan and Carsten Dachsbacher. 2013. Path space regularization for holistic and robust light transport. Comput. Graphi. Forum 32, 2 (2013), 63–72.Google ScholarCross Ref
    23. Jaroslav Kivánek and Mark Colbert. 2007. Real-time shading with filtered importance sampling. Comput. Graph. Forum 27, 4 (Jun 2007), 71.Google Scholar
    24. Eric P. Lafortune and Yves D. Willems. 1993. Bi-directional path tracing. In Proceedings of Compugraphics. 145–153.Google Scholar
    25. Fabrice Neyret. 1998. Modeling animating and rendering complex scenes using volumetric textures. IEEE Trans. Vis. Comput. Graph. 4, 1 (1998), 55–70. Google ScholarDigital Library
    26. Marc Olano and Dan Baker. 2010. LEAN mapping. In ACM I3D. 181–188. Google ScholarDigital Library
    27. Matt Pharr and Gerg Humphreys. 2010. Physically Based Rendering, 2nd ed. Morgan Kaufmann.Google Scholar
    28. Lars Schjøth, Jeppe Revall Frisvad, Kenny Erleben, and Jon Sporring. 2007. Photon differentials. In GRAPHITE. 179. Google ScholarDigital Library
    29. Mikio Shinya, Tokiichiro Takahashi, and Seiichiro Naito. 1987. Principles and applications of pencil tracing. ACM Comput. Graph. 21, 4 (Aug. 1987), 45–54. Google ScholarDigital Library
    30. Frank Suykens and Y. D. Willems. 2001. Path differentials and applications. In Eurographics Workshop on Rendering. 257–268. Google ScholarCross Ref
    31. Michael Toksvig. 2005. Mipmapping normal maps. Journal Graphics Tools 10, 3 (2005), 65–71. Google ScholarCross Ref
    32. Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Dissertation. Stanford University.Google Scholar
    33. Eric Veach and Leonidas Guibas. 1994. Bidirectional estimators for light transport. In Proceedings of Eurographics Rendering Workshop.Google Scholar
    34. Max Woodbury. 1950. Inverting Modified Matrices. Technical Report 42. Princeton University.Google Scholar
    35. Ling-Qi Yan, Miloš Hašan, Wenzel Jakob, Jason Lawrence, Steve Marschner, and Ravi Ramamoorthi. 2014. Rendering glints on high-resolution normal-mapped specular surfaces. ACM Trans. Graph. 33, 4 (2014). Google ScholarDigital Library
    36. Ling-Qi Yan, Miloš Hašan, Steve Marschner, and Ravi Ramamoorthi. 2016. Position-normal distributions for efficient rendering of specular microstructure. ACM Trans Graph. 35, 4 (2016), 56:1–56:9.Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: