“An inverse method for the exploration of layered material appearance” by Bati, Barla and Pacanowski
Conference:
Type(s):
Title:
- An inverse method for the exploration of layered material appearance
Presenter(s)/Author(s):
Abstract:
Layered materials exhibit a wide range of appearance, due to the combined effects of absorption and scattering at and between interfaces. Yet most existing approaches let users set the physical parameters of all layers by hand, a process of trial and error. We introduce an inverse method that provides control over BRDF lobe properties of layered materials, while automatically retrieving compatible physical parameters. Our method permits to explore the space of layered material appearance: it lets users find configurations with nearly indistinguishable appearance, isolate grazing angle effects, and give control over properties such as the color, blur or haze of reflections.
References:
1. F. Abelès. 1948. Sur la propagation des ondes électromagnétiques dans les milieux sratifiés. Ann. Phys. 12, 3 (1948), 504–520.Google ScholarCross Ref
2. B. F. Armaly, J. G. Ochoa, and D. C. Look. 1972. Restrictions on the Inversion of the Fresnel Reflectance Equations. Appl. Opt. 11, 12 (1972), 2907–2910.Google ScholarCross Ref
3. P. Barla, R. Pacanowski, and P. Vangorp. 2018. A Composite BRDF Model for Hazy Gloss. Computer Graphics Forum 37, 4 (2018), 55–66.Google ScholarCross Ref
4. M. Bati, R. Pacanowski, and P. Barla. 2019. Numerical Analysis of Layered Materials Models. Research Report.Google Scholar
5. P. Beckmann and A. Spizzichino. 1963. The scattering of electromagnetic waves from rough surfaces. Pergamon Press; [distributed in the Western Hemisphere by Macmillan, New York] goford, New York. viii, 503 p. pages.Google Scholar
6. L. Belcour. 2018. Efficient Rendering of Layered Materials Using an Atomic Decomposition with Statistical Operators. ACM Trans. Graph. 37, 4, Article 73 (2018), 15 pages.Google ScholarDigital Library
7. M. Colbert, S. Pattanaik, and J. Krivanek. 2006. BRDF-Shop: creating physically correct bidirectional reflectance distribution functions. IEEE Computer Graphics and Applications 26, 1 (2006), 30–36.Google ScholarDigital Library
8. Q. Dai, J. Wang, Y. Liu, J. Snyder, E. Wu, and B. Guo. 2009. The Dual-microfacet Model for Capturing Thin Transparent Slabs. Computer Graphics Forum 28, 7 (2009), 1917–1925.Google ScholarCross Ref
9. V. Deschaintre, M. Aittala, F. Durand, G. Drettakis, and A. Bousseau. 2018. Single-Image SVBRDF Capture with a Rendering-Aware Deep Network. ACM Trans. Graph. 37, 4, Article 128 (2018), 15 pages.Google ScholarDigital Library
10. S. Ergun, S. Önel, and A. Ozturk. 2016. A General Micro-flake Model for Predicting the Appearance of Car Paint. In Proc. of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations (EGSR ’16). Eurographics Association, 65–71.Google Scholar
11. S. Ershov, R. Durikovic, K. Kolchin, and K. Myszkowski. 2004. Reverse engineering approach to appearance-based design of metallic and pearlescent paints. The Visual Computer 20 (2004), 586–600.Google ScholarCross Ref
12. S. Ershov, K. Kolchin, and K. Myszkowski. 2001. Rendering Pearlescent Appearance Based On Paint-Composition Modelling. Computer Graphics Forum 20, 3 (2001), 227–238.Google ScholarCross Ref
13. L. E. Gamboa, A. Gruson, and D. Nowrouzezahrai. 2020. An Efficient Transport Estimator for Complex Layered Materials. Computer Graphics Forum 39, 2 (2020), 363–371.Google ScholarCross Ref
14. I. Georgiev, J. Portsmouth, Z. Andersson, A. Herubel, A. King, S. Ogaki, and F. Servant. 2019. A Surface Standard. https://autodesk.github.io/standard-surface/.Google Scholar
15. J. Gu, R. Ramamoorthi, P. Belhumeur, and S. Nayar. 2007. Dirty Glass: Rendering Contamination on Transparent Surfaces. In Eurographics Symposium on Rendering (EGSR’07). Eurographics Association, 159–170.Google Scholar
16. O. Gulbrandsen. 2014. Artist Friendly Metallic Fresnel. Journal of Computer Graphics Techniques (JCGT) 3, 4 (2014), 64–72.Google Scholar
17. J. Guo, J. Qian, Y. Guo, and J. Pan. 2017. Rendering Thin Transparent Layers with Extended Normal Distribution Functions. IEEE Transactions on Visualization & Computer Graphics 23, 9 (2017), 2108–2119.Google ScholarDigital Library
18. Y. Guo, M. Hašan, and S. Zhao. 2018. Position-Free Monte Carlo Simulation for Arbitrary Layered BSDFs. ACM Trans. Graph. 37, 6, Article 279 (2018), 14 pages.Google ScholarDigital Library
19. H. Hirayama, K. Kaneda, H. Yamashita, and Y. Monden. 2001. An accurate illumination model for objects coated with multilayer films. Computers & Graphics 25, 3 (2001), 391–400.Google ScholarCross Ref
20. I. Icart and D. Arquès. 2000. A Physically-Based BRDF Model for Multilayer Systems with Uncorrelated Rough Boundaries. In Proc. of the Eurographics Workshop on Rendering Techniques 2000. Springer-Verlag, 353–364.Google Scholar
21. W. Jakob, E. d’Eon, O. Jakob, and S. Marschner. 2014. A Comprehensive Framework for Rendering Layered Materials. ACM Trans. Graph. 33, 4, Article 118 (2014), 14 pages.Google ScholarDigital Library
22. W. Matusik, H. Pfister, M. Brand, and L. McMillan. 2003. A Data-Driven Reflectance Model. ACM Trans. Graph. 22, 3 (2003), 759–769.Google ScholarDigital Library
23. A. Ngan, F. Durand, and W. Matusik. 2006. Image-Driven Navigation of Analytical BRDF Models. In Symposium on Rendering (Nicosia, Cyprus) (EGSR ’06). Eurographics Association, 399–407.Google Scholar
24. G. Patow and X. Pueyo. 2003. A Survey of Inverse Rendering Problems. Computer Graphics Forum 22, 4 (2003), 663–687.Google ScholarCross Ref
25. F. Pellacini, J. A. Ferwerda, and D. P. Greenberg. 2000. Toward a Psychophysically-Based Light Reflection Model for Image Synthesis. In Proc. of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’00). ACM Press/Addison-Wesley Publishing Co., 55–64.Google ScholarDigital Library
26. M. R. Querry. 1969. Direct Solution of the Generalized Fresnel Reflectance Equations. J. Opt. Soc. Am. 59, 7 (1969), 876–877.Google ScholarCross Ref
27. J. Riviere, I. Reshetouski, L. Filipi, and A. Ghosh. 2017. Polarization Imaging Reflectometry in the Wild. ACM Trans. Graph. 36, 6, Article 206 (2017), 14 pages.Google ScholarDigital Library
28. A. Serrano, D. Gutierrez, K. Myszkowski, H. P. Seidel, and B. Masia. 2016. An intuitive control space for material appearance. ACM Trans. Graph. 35, 6, Article 186 (2016), 12 pages.Google ScholarDigital Library
29. L. Simonot, M. Hébert, and R. D. Hersch. 2006. Extension of the Williams-Clapper model to stacked nondiffusing colored coatings with different refractive indices. J. Opt. Soc. Am. A 23, 6 (2006), 1432–1441.Google ScholarCross Ref
30. G. G. Stokes. 1862. IV. On the intensity of the light reflected from or transmitted through a pile of plates. Proc. of the Royal Society of London 11 (1862), 545–556.Google ScholarCross Ref
31. B. Walter, S. Marschner, H. Li, and K. Torrance. 2007. Microfacet Models for Refraction Through Rough Surfaces. In Eurographics Symposium on Rendering (EGSR’07). Eurographics Association, 195–206.Google Scholar
32. G. J. Ward. 1992. Measuring and Modeling Anisotropic Reflection. SIGGRAPH Comput. Graph. 26, 2 (1992), 265–272.Google ScholarDigital Library
33. A. Weidlich and A. Wilkie. 2007. Arbitrarily Layered Micro-facet Surfaces. In Proc. of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia (GRAPHITE ’07). ACM, 171–178.Google Scholar
34. H. Wu, J. Dorsey, and H. Rushmeier. 2013. Inverse bi-scale material design. ACM Trans. Graph. 32, 6, Article 163 (2013), 10 pages.Google ScholarDigital Library
35. M. Xia, B. Walter, C. Hery, and S. Marschner. 2020. Gaussian Product Sampling for Rendering Layered Materials. Computer Graphics Forum 39, 1 (2020), 420–435.Google ScholarCross Ref
36. P. Yeh. 2005. Optical Waves in Layered Media. Number v. 2 in Wiley Series in Pure and Applied Optics. Wiley.Google Scholar
37. T. Zeltner and W. Jakob. 2018. The Layer Laboratory: A Calculus for Additive and Subtractive Composition of Anisotropic Surface Reflectance. ACM Trans. Graph. 37, 4, Article 74 (2018), 14 pages.Google ScholarDigital Library
38. S. Zhao, R. Ramamoorthi, and K. Bala. 2014. High-order similarity relations in radiative transfer. ACM Trans. Graph. 33, 4 (2014), 104:1–104:12.Google ScholarDigital Library
39. K. Zsolnai-Fehér, P. Wonka, and M. Wimmer. 2020. Photorealistic Material Editing Through Direct Image Manipulation. Computer Graphics Forum 39, 4 (2020), 107–120.Google ScholarCross Ref