“Additive light field displays: realization of augmented reality with holographic optical elements” by Lee, Jang, Moon and Cho

  • ©Seungjae Lee, Changwon Jang, Seokil Moon, Jaebum Cho, and Byoungho Lee




    Additive light field displays: realization of augmented reality with holographic optical elements

Session/Category Title:   COMPUTATIONAL DISPLAY




    We propose a see-through additive light field display as a novel type of compressive light field display. We utilize holographic optical elements (HOEs) as transparent additive layers. The HOE layers are almost free from diffraction unlike spatial light modulator layers, which makes this additive light field display more advantageous when modifying the number of layers, thickness, and pixel density compared with conventional compressive displays. Meanwhile, the additive light field display maintains advantages of compressive light field displays. The proposed additive light field display shows bright and full-color volumetric images in high definition. In addition, users can view real-world scenes beyond the displays. Hence, we expect that our method can contribute to the realization of augmented reality. Here, we describe implementation of a prototype additive light field display with two additive layers, evaluate the performance of transparent HOE layers, describe several results of display experiments, discuss the diffraction effect of spatial light modulators, and analyze the ability of the additive light field display to express uncorrelated light fields.


    1. Akeley, K., Watt, S. J., Girshick, A. R., and Banks, M. S. 2004. A stereo display prototype with multiple focal distances. ACM Trans. Graph. (SIGGRAPH) 23, 804–813. Google ScholarDigital Library
    2. Andersen, A. H., and Kak, A. C. 1984. Simultaneous algebraic reconstruction technique (sart): a superior implementation of the art algorithm. Ultrasonic imaging 6, 1, 81–94.Google Scholar
    3. Azuma, R. T. 1997. A survey of augmented reality. Presence: Teleoperators and virtual environments 6, 4, 355–385. Google ScholarDigital Library
    4. Close, D. H. 1975. Holographic optical elements. Opt. Eng. 14, 145402.Google ScholarCross Ref
    5. Coleman, T., and Li, Y. 1996. A reective newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM Journal on Optimization 6, 4, 1040–1058. Google ScholarDigital Library
    6. Coufal, H. J., Sincerbox, G. T., and Psaltis, D. 2000. Holographic data storage. Springer-Verlag. Google ScholarDigital Library
    7. Hagbi, N., Bergig, O., El-Sana, J., and Billinghurst, M. 2011. Shape recognition and pose estimation for mobile augmented reality. Visualization and Computer Graphics, IEEE Transactions on 17, 10, 1369–1379. Google ScholarDigital Library
    8. Hilliges, O., Kim, D., Izadi, S., Weiss, M., and Wilson, A. 2012. Holodesk: direct 3d interactions with a situated see-through display. In In Proceedings of the Conference on Human Factors in Computing Systems, ACM, 2421–2430. Google ScholarDigital Library
    9. Hirsch, M., Wetzstein, G., and Raskar, R. 2014. A compressive light field projection system. ACM Trans. Graph. (SIGGRAPH) 33, 4, 58. Google ScholarDigital Library
    10. Hong, S.-H., and Javidi, B. 2004. Improved resolution 3d object reconstruction using computational integral imaging with time multiplexing. Opt. Express 12, 19, 4579–4588.Google ScholarCross Ref
    11. Hong, J., Kim, Y., Park, S.-G., Hong, J.-H., Min, S.-W., Lee, S.-D., and Lee, B. 2010. 3d/2d convertible projection-type integral imaging using concave half mirror array. Opt. Express 18, 20, 20628–20637.Google ScholarCross Ref
    12. Hong, J., Min, S.-W., and Lee, B. 2012. Integral floating display systems for augmented reality. Appl. Opt. 51, 18, 4201–4209.Google ScholarCross Ref
    13. Hong, K., Yeom, J., Jang, C., Hong, J., and Lee, B. 2014. Full color lens-array holographic optical element for three-dimensional optical see-through augmented reality. Opt. Lett. 39, 1, 127–130.Google ScholarCross Ref
    14. Huang, F.-C., Chen, K., and Wetzstein, G. 2015. The light field stereoscope immersive computer graphics via factored near-eye light field displays with focus cues. ACM Trans. Graph. (SIGGRAPH) 34, 4, 60. Google ScholarDigital Library
    15. Huang, Y.-T. 1994. Polarization-selective volume holograms: general design. Appl. Opt. 33, 11, 2115–2120.Google ScholarCross Ref
    16. Jang, C., Lee, C.-K., Jeong, J., Li, G., Lee, S., Yeom, J., Hong, K., and Lee, B. 2016. Recent progress in see-through three-dimensional displays using holographic optical elements. Appl. Opt. 55, 3, A71–A85.Google ScholarCross Ref
    17. Javidi, B., and Hua, H. 2014. A 3d integral imaging optical see-through headmounted display. Opt. Express 22, 11, 13484–13492.Google ScholarCross Ref
    18. Kasai, I., Tanijiri, Y., Endo, T., and Ueda, H. 2001. A practical see-through head mounted display using a holographic optical element. Opt. Rev 8, 4, 241–244.Google ScholarCross Ref
    19. Kaufmann, H., and Schmalstieg, D. 2003. Mathematics and geometry education with collaborative augmented reality. Computer & Graphics 27, 3, 339–345.Google ScholarCross Ref
    20. Kim, H.-J., Lee, S.-K., Piao, M.-L., Kim, N., and Park, J.-H. 2015. Three-dimensional holographic head mounted display using holographic optical element. IEEE International Conference on Consumer Electronics (ICCE), 132–133.Google Scholar
    21. Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers: optimizing dual-layer 3d displays using low-rank light field factorization. ACM Trans. Graph. (SIGGRAPH Asia) 29, 163:1–163:10. Google ScholarDigital Library
    22. Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization fields: Dynamic light field display using multi-layer lcds. ACM Trans. Graph. (SIGGRAPH Asia) 30, 6, 186. Google ScholarDigital Library
    23. Lee, D. D., and Seung, S. 1999. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791.Google ScholarCross Ref
    24. Lee, S., Jang, C., Cho, J., Yeom, J., Jeong, J., and Lee, B. 2016. Viewing angle enhancement of an integral imaging display using bragg mismatched reconstruction of holographic optical elements. Appl. Opt. 55, 3, A95–A103.Google ScholarCross Ref
    25. Lee, B. 2013. Three-dimensional displays, past and present. Physics today 66, 4, 36–41.Google Scholar
    26. Li, G., Jeong, J., Lee, D., Yeom, J., Jang, C., Lee, S., and Lee, B. 2016. Space bandwidth product enhancement of holographic display using high-order diffraction guided by holographic optical element. Opt. Express 23, 26, 33170–33183.Google ScholarCross Ref
    27. Lippmann, G. 1908. Epreuves reversibles donnant la sensation du relief. j. phys 7, 4, 821–825.Google Scholar
    28. Liu, S., Cheng, D., and Hua, H. 2008. An optical see-through head mounted display with addressable focal planes. In Proc. ISMAR, 33–42. Google ScholarDigital Library
    29. Love, G. D., Hoffman, D. M., Hands, P. J., Gao, J., Kirby, A. K., and Banks, M. S. 2009. High-speed switchable lens enables the development of a volumetric stereoscopic display. Opt. Express 17, 18, 15716–15725.Google ScholarCross Ref
    30. Maimone, A., Lanman, D., Rathinavel, K., Keller, K., Luebke, D., and Fuchs, H. 2014. Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources. ACM Trans. Graph. (SIGGRAPH) 33, 4, 89. Google ScholarDigital Library
    31. Narain, R., Albert, R. A., Bulbul, A., Ward, G. J., Banks, M. S., and O’Brien, J. F. 2015. Optimal presentation of imagery with focus cues on multi-plane displays. ACM Trans. Graph. (SIGGRAPH) 34, 4, 59. Google ScholarDigital Library
    32. Olwal, A., Lindfors, C., Gustafsson, J., Kjellberg, T., and Mattsson, L. 2005. Astor: An autostereoscopic optical see-through augmented reality system. In Proc. ISMAR, 24–27. Google ScholarDigital Library
    33. Park, G., Jung, J.-H., Hong, K., Kim, Y., Kim, Y.-H., Min, S.-W., and Lee, B. 2009a. Multi-viewer tracking integral imaging system and its viewing zone analysis. Opt. Express 17, 20, 17895–17908.Google ScholarCross Ref
    34. Park, J.-H., Hong, K., and Lee, B. 2009b. Recent progress in three-dimensional information processing based on integral imaging. Appl. Opt. 48, 34, H77–H94.Google ScholarCross Ref
    35. Saleh, B. E., Teich, M. C., and Saleh, B. E. 2007. Fundamentals of photonics, vol. 22. Wiley New York.Google Scholar
    36. Sasaki, H., Yamamoto, K., Wakunami, K., Ichihashi, Y., Oi, R., and Senoh, T. 2014. Large size three-dimensional video by electronic holography using multiple spatial light modulators. Sci. Rep. 4, 6177.Google Scholar
    37. State, A., Livingston, M. A., Garret, W. F., Hirota, G., Whitron, M. C., Pisano, E. D., and Fuchs, H. 1996. Technologies for augmented-reality systems: Realizing ultrasound-guided needle biopsies. ACM Trans. Graph. (SIGGRAPH), 439–446. Google ScholarDigital Library
    38. Takaki, Y., and Nago, N. 2010. Multi-projection of lenticular displays to construct a 256-view super multi-view display. Opt. Express 18, 9, 8824–8835.Google ScholarCross Ref
    39. Takaki, Y., and Okada, N. 2009. Hologram generation by horizontal scanning of a high-speed spatial light modulator. Appl. Opt. 48, 17, 3255–3260.Google ScholarCross Ref
    40. Takaki, Y., and Yamaguchi, Y. 2015. Flat-panel see-through three-dimensional display based on integral imaging. Opt. Lett. 40, 8, 1873–1876.Google ScholarCross Ref
    41. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3d: Tomographic image synthesis for attenuation-based light eld and high dynamic range displays. ACM Trans. Graph. (SIGGRAPH) 30, 1–11. Google ScholarDigital Library
    42. Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. (SIGGRAPH) 31, 1–11. Google ScholarDigital Library
    43. Yeom, J., Jeong, J., Jang, C., Li, G., Hong, K., and Lee, B. 2015. Three-dimensional/two-dimensional convertible projection screen using see-through integral imaging based on holographic optical element. Applied optics 54, 30, 8856–8862.Google Scholar

ACM Digital Library Publication:

Overview Page: