“Active learning for real-time motion controllers” by Cooper, Hertzmann and Popovic

  • ©Seth Cooper, Aaron Hertzmann, and Zoran Popovic




    Active learning for real-time motion controllers



    This paper describes an approach to building real-time highly-controllable characters. A kinematic character controller is built on-the-fly during a capture session, and updated after each new motion clip is acquired. Active learning is used to identify which motion sequence the user should perform next, in order to improve the quality and responsiveness of the controller. Because motion clips are selected adaptively, we avoid the difficulty of manually determining which ones to capture, and can build complex controllers from scratch while significantly reducing the number of necessary motion samples.


    1. Arikan, O., Forsyth, D. A., and O’Brien, J. F. 2003. Motion synthesis from annotations. ACM Transactions on Graphics 22, 3 (July), 402–408. Google ScholarDigital Library
    2. Atkinson, A. C., and Donev, A. N. 1992. Optimum Experimental Designs. Oxford University Press.Google Scholar
    3. Brand, M., and Hertzmann, A. 2000. Style machines. Proceedings of SIGGRAPH 2000 (July), 183–192. Google ScholarDigital Library
    4. Cohn, D., Atlas, L., and Ladner, R. 1994. Improving Generalization with Active Learning. Machine Learning 5, 2, 201–221. Google ScholarDigital Library
    5. Gleicher, M., Shin, H. J., Kovar, L., and Jepsen, A. 2003. Snap-Together Motion: Assembling Run-Time Animations. In Proc. I3D. Google ScholarDigital Library
    6. Kovar, L., and Gleicher, M. 2003. Flexible Automatic Motion Blending with Registration Curves. In Proc. SCA. Google ScholarDigital Library
    7. Kovar, L., and Gleicher, M. 2004. Automated Extraction and Parameterization of Motions in Large Data Sets. ACM Trans. on Graphics (Aug.). Google ScholarDigital Library
    8. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion Graphs. ACM Trans. on Graphics 21, 3 (July), 473–482. (Proceedings of ACM SIGGRAPH 2002). Google ScholarDigital Library
    9. Kwon, T., and Shin, S. Y. 2005. Motion Modeling for On-Line Locomotion Synthesis. In Proc. SCA. Google ScholarDigital Library
    10. Lau, M., and Kuffner, J. 2006. Precomputed Search Trees: Planning for Interactive Goal-Driven Animation. In Proc. SCA. Google ScholarDigital Library
    11. Lee, J., and Lee, K. H. 2006. Precomputing avatar behavior from human motion data. Graphical Models 68, 2 (Mar.), 158–174. Google ScholarDigital Library
    12. Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and Pollard, N. S. 2002. Interactive Control of Avatars Animated With Human Motion Data. ACM Trans. on Graphics 21, 3 (July), 491–500. Google ScholarDigital Library
    13. Lee, K. H., Choi, M. G., and Lee, J. 2006. Motion patches: building blocks for virtual environments annotated with motion data. ACM Transactions on Graphics 25, 3 (July), 898–906. Google ScholarDigital Library
    14. Li, Y., Wang, T., and Shum, H.-Y. 2002. Motion Texture: A Two-Level Statistical Model for Character Motion Synthesis. ACM Trans. on Graphics 21, 3 (July), 465–472. Google ScholarDigital Library
    15. Lindenbaum, M., Markovitch, S., and Rusakov, D. 2004. Selective sampling for nearest neighbor classifiers. Mach. Learn. 54, 2, 125–152. Google ScholarDigital Library
    16. Liu, C. K., and Popović, Z. 2002. Synthesis of Complex Dynamic Character Motion from Simple Animations. ACM Trans. on Graphics 21, 3 (July), 408–416. Google ScholarDigital Library
    17. Liu, C. K., Hertzmann, A., and Popović, Z. 2005. Learning Physics-Based Motion Style with Nonlinear Inverse Optimization. ACM Transactions on Graphics 24, 3 (Aug.), 1071–1081. Google ScholarDigital Library
    18. Mukai, T., and Kuriyama, S. 2005. Geostatistical motion interpolation. ACM Trans. on Graphics 24, 3 (Aug.), 1062–1070. Google ScholarDigital Library
    19. Nelder, J. A., and Mead, R. 1965. A simplex method for function minimization. Computer Journal 7, 4, 308–313.Google ScholarCross Ref
    20. Park, S. I., Shin, H. J., Kim, T. H., and Shin, S. Y. 2004. On-line motion blending for real-time locomotion generation. Comp. Anim. Virtual Worlds 15, 125–138. Google ScholarDigital Library
    21. Reitsma, P. S. A., and Pollard, N. S. 2004. Evaluating motion graphs for character navigation. In Proc. SCA. Google ScholarDigital Library
    22. Rose, C., Cohen, M. F., and Bodenheimer, B. 1998. Verbs and Adverbs: Multidimensional Motion Interpolation. IEEE Computer Graphics & Applications 18, 5, 32–40. Google ScholarDigital Library
    23. Rose III, C. F., Sloan, P.-P. J., and Cohen, M. F. 2001. Artist-Directed Inverse-Kinematics Using Radial Basis Function Interpolation. Computer Graphics Forum 20, 3, 239–250.Google ScholarCross Ref
    24. Santner, T. J., Williams, B. J., and Notz, W. I. 2003. The Design and Analysis of Computer Experiments. Springer.Google Scholar
    25. Shin, H. J., and Oh, H. S. 2006. Fat Graphs: Constructing an interactive character with continuous controls. In Proc. SCA. Google ScholarDigital Library
    26. Sloan, P.-P.J., Rose III, C. F., and Cohen, M. F. 2001. Shape by Example. In Proc. I3D. Google ScholarDigital Library
    27. Torresani, L., Hackney, P., and Bregler, C. 2007. Learning Motion Style Synthesis from Perceptual Observations. In Proc. NIPS 19.Google Scholar
    28. Wiley, D. J., and Hahn, J. K. 1997. Interpolation synthesis of articulated figure motion. IEEE Computer Graphics and Applications 17, 6 (Nov./Dec.), 39–45. Google ScholarDigital Library
    29. Witkin, A., and Popović, Z. 1995. Motion Warping. Proc. SIGGRAPH 95 (Aug.), 105–108. Google ScholarDigital Library
    30. Yamane, K., Kuffner, J. J., and Hodgins, J. K. 2004. Synthesizing animations of human manipulation tasks. ACM Trans. on Graphics 23, 3 (Aug.), 532–539. Google ScholarDigital Library
    31. Zordan, V. B., Majkowska, A., Chiu, B., and Fast, M. 2005. Dynamic Response for Motion Capture Animation. ACM Transactions on Graphics 24, 3 (Aug.). Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: