“Active Animations of Reduced Deformable Models with Environment Interactions” by Pan and Manocha

  • ©Zherong Pan and Dinesh Manocha

Conference:


Type(s):


Title:

    Active Animations of Reduced Deformable Models with Environment Interactions

Session/Category Title:   A Race to the Bottom (of the Geometric Energy Plot)


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We present an efficient spacetime optimization method to automatically generate animations for a general volumetric, elastically deformable body. Our approach can model the interactions between the body and the environment and automatically generate active animations. We model the frictional contact forces using contact invariant optimization and the fluid drag forces using a simplified model. To handle complex objects, we use a reduced deformable model and present a novel hybrid optimizer to search for the local minima efficiently. This allows us to use long-horizon motion planning to automatically generate animations such as walking, jumping, swimming, and rolling. We evaluate the approach on different shapes and animations, including deformable body navigation and combining with an open-loop controller for realtime forward simulation.

References:


    1. Steven S. An, Theodore Kim, and Doug L. James. 2008. Optimizing cubature for efficient integration of subspace deformations. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’08). ACM, New York, NY. Google ScholarDigital Library
    2. Jernej Barbič, Marco da Silva, and Jovan Popović. 2009. Deformable object animation using reduced optimal control. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’09). ACM, New York, NY. Google ScholarDigital Library
    3. Jernej Barbič and Doug L. James. 2005. Real-time subspace integration for St. venant-kirchhoff deformable models. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’05). ACM, New York, NY, 982–990. Google ScholarDigital Library
    4. Jernej Barbič and Doug L. James. 2010. Subspace self-collision culling. ACM Trans. Graph. 29, 4, Article 81 (July 2010). Google ScholarDigital Library
    5. Jernej Barbič, Funshing Sin, and Eitan Grinspun. 2012. Interactive editing of deformable simulations. ACM Trans. Graph. 31, 4, Article 70 (July 2012). Google ScholarDigital Library
    6. Jernej Barbič and Yili Zhao. 2011. Real-time large-deformation substructuring. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’11). ACM, New York, NY. Google ScholarDigital Library
    7. Miklós Bergou, Saurabh Mathur, Max Wardetzky, and Eitan Grinspun. 2007. TRACKS: Toward directable thin shells. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’07). ACM, New York, NY. Google ScholarDigital Library
    8. Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1 (Jan. 2011), 1–122. Google ScholarDigital Library
    9. Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (July 2002), 594–603. Google ScholarDigital Library
    10. F. Calakli and G. Taubin. 2011. SSD: Smooth signed distance surface reconstruction. Comput. Graph. Forum 30, 7 (2011), 1993–2002.Google ScholarCross Ref
    11. Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. 2002. Interactive skeleton-driven dynamic deformations. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’02). ACM, New York, NY, 586–593. Google ScholarDigital Library
    12. Nuttapong Chentanez, Ron Alterovitz, Daniel Ritchie, Lita Cho, Kris K. Hauser, Ken Goldberg, Jonathan R. Shewchuk, and James F. O’Brien. 2009. Interactive simulation of surgical needle insertion and steering. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’09). ACM, New York, NY. Google ScholarDigital Library
    13. Min Gyu Choi and Hyeong-Seok Ko. 2005. Modal warping: Real-time simulation of large rotational deformation and manipulation. IEEE Trans. Visual. Comput. Graph. 11, 1 (Jan 2005), 91–101. Google ScholarDigital Library
    14. Stelian Coros, Sebastian Martin, Bernhard Thomaszewski, Christian Schumacher, Robert Sumner, and Markus Gross. 2012. Deformable objects alive! ACM Trans. Graph. 31, 4, Article 69 (July 2012). Google ScholarDigital Library
    15. Guillermo Gallego and Anthony Yezzi. 2015. A compact formula for the derivative of a 3-D rotation in exponential coordinates. J. Math. Imag. Vis. 51, 3 (March 2015), 378–384. Google ScholarDigital Library
    16. Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski, Robert Sumner, Stelian Coros, and Markus Gross. 2012. Rig-space physics. ACM Trans. Graph. 31, 4, Article 72 (July 2012). Google ScholarDigital Library
    17. David Harmon and Denis Zorin. 2013. Subspace integration with local deformations. ACM Trans. Graph. 32, 4, Article 107 (July 2013). Google ScholarDigital Library
    18. Kris K. Hauser, Chen Shen, and James F. O’Brien. 2003. Interactive deformation using modal analysis with constraints. In Graphics Interface. CIPS, Canadian Human-Computer Commnication Society, 247–256. Retrieved from http://graphics.cs.berkeley.edu/papers/Hauser-IDU-2003-06/.Google Scholar
    19. Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, and Konrad Polthier. 2012. Interactive spacetime control of deformable objects. ACM Trans. Graph. 31, 4, Article 71 (July 2012). Google ScholarDigital Library
    20. G. Irving, J. Teran, and R. Fedkiw. 2006. Tetrahedral and hexahedral invertible finite elements. Graph. Models 68, 2 (March 2006), 66–89. Google ScholarDigital Library
    21. Doug L. James and Dinesh K. Pai. 2004. BD-tree: Output-sensitive collision detection for reduced deformable models. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’04). ACM, New York, NY, 393–398. Google ScholarDigital Library
    22. Sertac Karaman and Emilio Frazzoli. 2011. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30, 7 (2011), 846–894. arXiv:http://dx.doi.org/10.1177/0278364911406761 Google ScholarDigital Library
    23. Junggon Kim and Nancy S. Pollard. 2011. Fast simulation of skeleton-driven deformable body characters. ACM Trans. Graph. 30, 5, Article 121 (Oct. 2011). Google ScholarDigital Library
    24. Theodore Kim and Doug L. James. 2011. Physics-based character skinning using multi-domain subspace deformations. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’11). ACM, New York, NY, 63–72. Google ScholarDigital Library
    25. Dong C. Liu and Jorge Nocedal. 1989. On the limited memory BFGS method for large scale optimization. Math. Program. 45, 1 (1989), 503–528. Google ScholarDigital Library
    26. Libin Liu, KangKang Yin, Bin Wang, and Baining Guo. 2013. Simulation and control of skeleton-driven soft body characters. ACM Trans. Graph. 32, 6, Article 215 (Nov. 2013). Google ScholarDigital Library
    27. Manolis I. A. Lourakis. 2005. A brief description of the Levenberg-Marquardt algorithm implemented by Levmar. http://www.ics.forth.gr/∼lourakis/levmar.Google Scholar
    28. Igor Mordatch, Emanuel Todorov, and Zoran Popović. 2012. Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Graph. 31, 4, Article 43 (July 2012). Google ScholarDigital Library
    29. Igor Mordatch, Jack M. Wang, Emanuel Todorov, and Vladlen Koltun. 2013. Animating human lower limbs using contact-invariant optimization. ACM Trans. Graph. 32, 6, Article 203 (Nov. 2013). Google ScholarDigital Library
    30. M. Mukadam, X. Yan, and B. Boots. 2016. Gaussian process motion planning. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’16). 9–15.Google Scholar
    31. Matthias Müller and Markus Gross. 2004. Interactive virtual materials. In Proceedings of the Conference on Graphics Interface 2004 (GI’04). Canadian Human-Computer Communications Society, School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, 239–246. Retrieved from http://dl.acm.org/citation.cfm?id=1006058.1006087. Google ScholarDigital Library
    32. Zherong Pan, Hujun Bao, and Jin Huang. 2015. Subspace dynamic simulation using rotation-strain coordinates. ACM Trans. Graph. 34, 6, Article 242 (Oct. 2015). Google ScholarDigital Library
    33. Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne. 2017. DeepLoco: Dynamic locomotion skills using hierarchical deep reinforcement learning. ACM Trans. Graph. 36, 4, Article 41 (July 2017), 13 pages. Google ScholarDigital Library
    34. A. Pentland and J. Williams. 1989. Good vibrations: Modal dynamics for graphics and animation. SIGGRAPH Comput. Graph. 23, 3 (July 1989), 207–214. Google ScholarDigital Library
    35. Elmar RÃijckert and Andrea D’Avella. 2013. Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems. Front. Comput. Neurosci. 7 (2013), 138.Google Scholar
    36. Stefan Schaal. 2006. Dynamic movement primitives-A framework for motor control in humans and humanoid robotics. In Adaptive Motion of Animals and Machines. Springer, 261–280.Google Scholar
    37. Christian Schulz, Christoph von Tycowicz, Hans-Peter Seidel, and Klaus Hildebrandt. 2014. Animating deformable objects using sparse spacetime constraints. ACM Trans. Graph. 33, 4, Article 109 (July 2014). Google ScholarDigital Library
    38. Jie Tan, Greg Turk, and C. Karen Liu. 2012. Soft body locomotion. ACM Trans. Graph. 31, 4, Article 26 (July 2012). Google ScholarDigital Library
    39. Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically deformable models. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’87). ACM, New York, NY, 205–214. Google ScholarDigital Library
    40. E. Todorov. 2011. A convex, smooth and invertible contact model for trajectory optimization. In Proceedings of the IEEE International Conference on Robotics and Automation. 1071–1076.Google ScholarCross Ref
    41. Jack M. Wang, Samuel R. Hamner, Scott L. Delp, and Vladlen Koltun. 2012. Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Trans. Graph. 31, 4, Article 25 (July 2012). Google ScholarDigital Library
    42. Andrew Witkin and Michael Kass. 1988. Spacetime constraints. In Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’88). ACM, New York, NY, 159–168. Google ScholarDigital Library
    43. Hongyi Xu and Jernej Barbič. 2016. Pose-space subspace dynamics. ACM Trans. Graph. 35, 4, Article 35 (July 2016). Google ScholarDigital Library
    44. Cem Yuksel, Donald H. House, and John Keyser. 2007. Wave particles. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’07). ACM, New York, NY.

ACM Digital Library Publication:



Overview Page: