“A vortex particle method for smoke, water and explosions” by Selle, Rasmussen and Fedkiw

  • ©Andrew Selle, Nick Rasmussen, and Ronald Fedkiw




    A vortex particle method for smoke, water and explosions



    Vorticity confinement reintroduces the small scale detail lost when using efficient semi-Lagrangian schemes for simulating smoke and fire. However, it only amplifies the existing vorticity, and thus can be insufficient for highly turbulent effects such as explosions or rough water. We introduce a new hybrid technique that makes synergistic use of Lagrangian vortex particle methods and Eulerian grid based methods to overcome the weaknesses of both. Our approach uses vorticity confinement itself to couple these two methods together. We demonstrate that this approach can generate highly turbulent effects unachievable by standard grid based methods, and show applications to smoke, water and explosion simulations.


    1. Chen, J., and Lobo, N. 1994. Toward interactive-rate simulation of fluids with moving obstacles using the navier-stokes equations. Computer Graphics and Image Processing 57, 107–116. Google ScholarDigital Library
    2. Cottet, G.-H., and Poncet, P. 2003. Advances in direct numerical simulations of 3d wall-bounded flows by vortex-in-cell methods. J. Comput. Phys. 193, 136–158. Google ScholarDigital Library
    3. Desbrun, M., and Cani, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Comput. Anim. and Sim. ’96 (Proc. of EG Workshop on Anim. and Sim.), Springer-Verlag, R. Boulic and G. Hegron, Eds., 61–76. Published under the name Marie-Paule Gascuel. Google ScholarDigital Library
    4. Drela, M., and Murman, E. M. 1987. Prospects for eulerian CFD analysis of helicopter vortex flows. In American Helicopter Society Specialist Meeting, Arlington Texas.Google Scholar
    5. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 736–744. Google ScholarDigital Library
    6. Fattal, R., and Lischinski, D. 2004. Target-driven smoke animation. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 441–448. Google ScholarDigital Library
    7. Fedkiw, R., Stam, J., and Jensen, H. 2001. Visual simulation of smoke. In Proc. of ACM SIGGRAPH 2001, 15–22. Google ScholarDigital Library
    8. Feldman, B. E., O’Brien, J. F., and Arikan, O. 2003. Animating suspended particle explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 708–715. Google ScholarDigital Library
    9. Felici, H. M., and Drela, M. 1990. Eulerian/lagrangian solution of 3-d rotational flows. In AIAA 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference.Google Scholar
    10. Felici, H. M., and Drela, M. 1993. An eulerian/lagrangian coupling procedure for three-dimensional vortical flows. AIAA Journal, 1993–3370.Google Scholar
    11. Felici, H. M., and Drela, M. 1993. Reduction of numerical diffusion in three-dimensional vortical flowsusing a coupled eulerian/lagrangian solution procedure. In AIAA 24th Fluid Dynamics Conference.Google Scholar
    12. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proc. of ACM SIGGRAPH 2001, 23–30. Google ScholarDigital Library
    13. Foster, N., and Metaxas, D. 1997. Modeling the motion of a hot, turbulent gas. In Proc. of SIGGRAPH 97, 181–188. Google ScholarDigital Library
    14. Gamito, M. N., Lopes, P. F., and Gomes, M. R. 1995. Two dimensional Simulation of Gaseous Phenomena Using Vortex Particles. In Proc. of the 6th Eurographics Workshop on Comput. Anim. and Sim., Springer-Verlag, 3–15.Google Scholar
    15. Goktekin, T. G., Bargteil, A. W., and O’Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 23. Google ScholarDigital Library
    16. Hadap, S., and Magnenat-Thalmann, N. 2001. Modeling Dynamic Hair as a Continuum. Comput. Graph. Forum 20, 3.Google ScholarCross Ref
    17. Ihm, I., Kang, B., and Cha, D. 2004. Animation of reactive gaseous fluids through chemical kinetics. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 203–212. Google ScholarDigital Library
    18. Kajiya, J. T., and Von Herzen, B. P. 1984. Ray Tracing Volume Densities. In Proc. of SIGGRAPH 1984, 165–174. Google ScholarDigital Library
    19. Kass, M., and Miller, G. 1990. Rapid, stable fluid dynamics for computer graphics. In Computer Graphics (Proc. of SIGGRAPH 90), vol. 24, 49–57. Google ScholarDigital Library
    20. Lamorlette, A., and Foster, N. 2002. Structural modeling of natural flames. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 729–735. Google ScholarDigital Library
    21. Lindsay, K., and Krasny, R. 2001. A particle method and adaptive treecode for vortex sheet motion in three-dimensional. J. Comput. Phys. 172, 879–907. Google ScholarDigital Library
    22. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.), 457–462. Google ScholarDigital Library
    23. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Trans. Graph. (SIGGRAPH Proc.). Google ScholarDigital Library
    24. Miyazaki, R., Dobashi, Y., and Nishita, T. 2002. Simulation of cumuliform clouds based on computational fluid dynamics. Proc. Eurographics 2002 Short Presentation, 405–410.Google Scholar
    25. Muller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 154–159. Google ScholarDigital Library
    26. Neff, M., and Fiume, E. 1999. A visual model for blast waves and fracture. In Proc. of Graph. Interface 1999, 193–202. Google ScholarDigital Library
    27. Nguyen, D., Fedkiw, R., and Jensen, H. 2002. Physically based modeling and animation of fire. In ACM Trans. Graph. (SIGGRAPH Proc.), vol. 29, 721–728. Google ScholarDigital Library
    28. Pighin, F., Cohen, J. M., and Shah, M. 2004. Modeling and editing flows using advected radial basis functions. In Proc. of 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim. Google ScholarDigital Library
    29. Ploumhans, P., Winckelmans, G. S., Salmon, J. K., Leonard, A., and Warre, M. S. 2002. Vortex methods for direct numerical simulation of three-dimensional bluff body flows: Application to the sphere at re=300, 500, and 1000. J. Comput. Phys. 178, 427–463. Google ScholarDigital Library
    30. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. 2003. Particle-based simulation of fluids. In Comp. Graph. Forum (Eurographics Proc.), vol. 22, 401–410.Google ScholarCross Ref
    31. Rasmussen, N., Nguyen, D., Geiger, W., and Fedkiw, R. 2003. Smoke simulation for large scale phenomena. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 703–707. Google ScholarDigital Library
    32. Stam, J. 1999. Stable fluids. In Proc. of SIGGRAPH 99, 121–128. Google ScholarDigital Library
    33. Stam, J. 2003. Flows on surfaces of arbitrary topology. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 724–731. Google ScholarDigital Library
    34. Steinhoff, J., and Underhill, D. 1994. Modification of the Euler Equations for “Vorticity Confinement”: Application to the Computation of Interacting Vortex Rings. Phys. of Fluids 6, 8, 2738–2744.Google ScholarCross Ref
    35. Treuille, A., McNamara, A., Popović, Z., and Stam, J. 2003. Keyframe control of smoke simulations. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 716–723. Google ScholarDigital Library
    36. Walther, J. H., and Koumoutsakos, P. 2001. Three-dimensional vortex methods for particle-laden flows with two-way coupling. J. Comput. Phys. 167, 39–71. Google ScholarDigital Library
    37. Yaeger, L., and Upson, C. 1986. Combining physical and visual simulation – creation of the planet jupiter for the film 2010. In Proc. of SIGGRAPH 1986, 85–93. Google ScholarDigital Library
    38. Yngve, G., O’Brien, J., and Hodgins, J. 2000. Animating explosions. In Proc. SIGGRAPH 2000, vol. 19, 29–36. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: