“A Unified Interpolary Subdivision Scheme for Quadrilateral Meshes” by Deng and Ma

  • ©Chongyang Deng and Weiyin Ma

Conference:


Type:


Title:

    A Unified Interpolary Subdivision Scheme for Quadrilateral Meshes

Session/Category Title: Surface Modeling


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    For approximating subdivision schemes, there are several unified frameworks for effectively constructing subdivision surfaces generalizing splines of an arbitrary degree. In this article, we present a similar unified framework for interpolatory subdivision schemes. We first decompose the 2n-point interpolatory curve subdivision scheme into repeated local operations. By extending the repeated local operations to quadrilateral meshes, an efficient algorithm can be further derived for interpolatory surface subdivision. Depending on the number n of repeated local operations, the continuity of the limit curve or surface can be of an arbitrary order CL, except in the surface case at a limited number of extraordinary vertices where C1 continuity with bounded curvature is obtained. Boundary rules built upon repeated local operations are also presented.

References:


    1. Augsdorfer, U. H., Cashman, T. J., Dodgson, N. A., and Sabin, M. A. 2009. Numerical checking of C1 for arbitrary degree quadrilateral subdivision schemes. In Mathematics of Surfaces, E. Hancock, R. Martin, and M. Sabin, Eds., Lecture Notes in Computer Science, vol. 5654, Springer, 45–54.
    2. Cai, Z. 1995. Convergence, error estimation and some properties of four-point interpolation subdivision scheme. Comput. Aid. Geom. Des. 12, 5, 459–468.
    3. Cashman, T. J. 2012. Beyond catmull-clark? A survey of advances in subdivision surface methods. Comput. Graph. Forum 31, 1, 42–61.
    4. Cashman, T. J., Augsdorfer, U. H., Dodgson, N. A., and Sabin, M. A. 2009a. NURBS with extraordinary points: High-degree, non-uniform, rational subdivision schemes. ACM Trans. Graph. 28, 3, 46:1–46:9.
    5. Cashman, T. J., Dodgson, N. A., and Sabin, M. A. 2009b. A symmetric, non-uniform, refine and smooth subdivision algorithm for general degree B-splines. Comput. Aid. Geom. Des. 26, 1, 94–104.
    6. Catmull, E. and Clark, J. 1978. Recursively generated b-spline surfaces on arbitrary topology meshes. Comput. Aid. Des. 10, 6, 350–355.
    7. Daubechies, I. 1992. Ten Lectures on Wavelets. SIAM.
    8. Deslauriers, G. and Dubuc, S. 1989. Symmetric iterative interpolation processes. Construct. Approx. 5, 1, 49–68.
    9. Dong, B. and Shen, Z. 2007. Pseudo-splines, wavelets and framelets. Appl. Comput. Harmon. Anal. 22, 1, 78–104.
    10. Doo, D. and Sabin, M. 1978. Analysis of the behaviour of recursive division surfaces near extraordinary points. Comput. Aid. Des. 10, 6, 356–360.
    11. Dubuc, S. 1986. Interpolation through an iterative scheme. J. Math. Anal. Appl. 114, 1, 185–204.
    12. Dyn, N., Hormann, K., Sabin, M. A., and Shen, Z. 2008. Polynomial reproduction by symmetric subdivision schemes. J. Approx. Theory 155, 1, 28–42.
    13. Dyn, N. and Levin, D. 2002. Subdivision schemes in geometric modelling. Acta Numerica 11, 73–114.
    14. Dyn, N., Levin, D., and Gregory, J. A. 1987. A four-point interpolatory subdivision scheme for curve design. Comput. Aid. Geom. Des. 4, 4, 257–268.
    15. Dyn, N., Levin, D., and Gregory, J. A. 1990. A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 9, 2, 160–169.
    16. Eirola, T. 1992. Sobolev characterization of solutions of dilation equations. SIAM J. Math. Anal. 23, 4, 1015–1030.
    17. Fang, M., Ma, W., and Wang, G. 2010. A generalized curve subdivision scheme of arbitrary order with a tension parameter. Comput. Aid. Geom. Des. 27, 9, 720–733.
    18. Hassan, M. F., Ivrissimitzis, I. P., Dodgson, N. A., and Sabin, M. A. 2002. An interpolating 4-point C2 ternary stationary subdivision scheme. Comput. Aid. Geom. Des. 19, 1, 1–18.
    19. Kobbelt, L. 1996. Interpolatory subdivision on open quadrilateral nets with arbitrary topology. Comput. Graph. Forum 15, 3, 409–420.
    20. Lane, J. M. and Riesenfeld, R. F. 1980. A theoretical development for the computer generation and display of piecewise polynomial surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2, 1, 35–46.
    21. Li, G. and Ma, W. 2005. Interpolatory ternary subdivision surfaces. Comput. Aid. Geom. Des. 23, 1, 45–77.
    22. Li, G. and Ma, W. 2007. A method for constructing interpolatory subdivision schemes and blending subdivision. Comput. Graph. Forum 26, 2, 185–201.
    23. Li, G., Ma, W., and Bao, H. 2005. A new interpolatory subdivision for quadrilateral meshes. Comput. Graph. Forum 24, 1, 3–16.
    24. Lin, S., Luo, X., You, F., and Li, Z. 2008. Deducing interpolating subdivision schemes from approximating subdivision schemes. ACM Trans. Graph. 27, 5, 146:1–146:7.
    25. Maillot, J. and Stam, J. 2001. A unified subdivision scheme for polygonal modeling. Comput. Graph. Forum 20, 3, 471–479.
    26. Oswald, P. and Schroder, P. 2003. Composite primal/dual square-root-of-three subdivision schemes. Comput. Aid. Geom. Des. 20, 3, 135–164.
    27. Peters, J. and Reif, U. 2008. Subdivision Surfaces. Springer.
    28. Prautzsch, H. 1998. Smoothness of subdivision surfaces at extraordinary points. Adv. Comput. Math. 9, 3–4, 377–389.
    29. Prautzsch, H. and Chen, Q. 2011. Analyzing midpoint subdivision. Comput. Aid. Geom. Des. 28, 7, 407–419.
    30. Reif, U. 1995. A unified approach to subdivision algorithms near extraordinary vertices. Comput. Aid. Geom. Des. 12, 2, 153–174.
    31. Schaefer, S. and Goldman, R. 2009. Non-uniform subdivision for B-splines of arbitrary degree. Comput. Aid. Geom. Des. 26, 1, 75–81.
    32. Schaefer, S. and Warren, J. 2002. A factored interpolatory subdivision scheme for quadrilateral surfaces. In Curve and Surface Fitting Saint-Malo, 373–382.
    33. Silva, S., Madeira, J., and Santos, B. S. 2009. Polymeco: An integrated environment for polygonal mesh analysis and comparison. Comput. Graph. 33, 2, 181–191.
    34. Stam, J. 2001. On subdivision schemes generalizing uniform b-spline surfaces of arbitrary degree. Comput. Aid. Geom. Des. 18, 5, 383–396.
    35. Warren, J. and Weimer, H. 2001. Subdivision Methods for Geometric Design: A Constructive Approach. Morgan Kaufmann, San Fransisco, CA.
    36. Weissman, A. 1989. A 6-point interpolatory subdivision scheme for curve design. M.S. thesis, Tel-Aviv University.
    37. Zorin, D. and Schroder, P. 2001. A unified framework for primal/dual quadrilateral subdivision schemes. Comput. Aid. Geom. Des. 18, 5, 429–454.
    38. Zorin, D., Schroder, P., Derose, T., Kobbelt, L., Levin, A., and Sweldens, W. 2000. Subdivision for modeling and animation. In ACM SIGGRAPH Course Notes, n. 23. ACM Press, New York.
    39. Zorin, D., Schroder, P., and Sweldens, W. 1996. Interpolating subdivision for meshes with arbitrary topology. In Proceedings of the SIGGRAPH International Conference on Computer Graphics and Interactive Techniques. J. Fujii, Ed., ACM Press, New York, 189–192.

ACM Digital Library Publication:



Overview Page: