“A quantized-diffusion model for rendering translucent materials” by d’Eon and Irving

  • ©Eugene d’Eon and Geoffrey Irving




    A quantized-diffusion model for rendering translucent materials



    We present a new BSSRDF for rendering images of translucent materials. Previous diffusion BSSRDFs are limited by the accuracy of classical diffusion theory. We introduce a modified diffusion theory that is more accurate for highly absorbing materials and near the point of illumination. The new diffusion solution accurately decouples single and multiple scattering. We then derive a novel, analytic, extended-source solution to the multilayer search-light problem by quantizing the diffusion Green’s function. This allows the application of the diffusion multipole model to material layers several orders of magnitude thinner than previously possible and creates accurate results under high-frequency illumination. Quantized diffusion provides both a new physical foundation and a variable-accuracy construction method for sum-of-Gaussians BSSRDFs, which have many useful properties for efficient rendering and appearance capture. Our BSSRDF maps directly to previous real-time rendering algorithms. For film production rendering, we propose several improvements to previous hierarchical point cloud algorithms by introducing a new radial-binning data structure and a doubly-adaptive traversal strategy.


    1. Aronson, R. 1995. Boundary conditions for diffusion of light. J. Opt. Soc. Am. A 12, 11 (Nov), 2532–2539.Google ScholarCross Ref
    2. Aronson, R. 1997. Radiative transfer implies a modified reciprocity relation. J. Opt. Soc. Am. A 14, 2 (Feb), 486–490.Google ScholarCross Ref
    3. Blinn, J. F. 1982. Light reflection functions for simulation of clouds and dusty surfaces. In Computer Graphics (Proceedings of SIGGRAPH 82), ACM, vol. 16, 21–29. Google Scholar
    4. Bouthors, A., Neyret, F., Max, N., Bruneton, E., and Crassin, C. 2008. Interactive multiple anisotropic scattering in clouds. In Proceedings of the 2008 symposium on Interactive 3D graphics and games, ACM, 173–182. Google Scholar
    5. Brinkworth, B. J. 1964. A diffusion model of the transport of radiation from a point source in the lower atmosphere. British Journal of Applied Physics 15, 6, 733.Google ScholarCross Ref
    6. Bryan, G. H. 1890. An application of the method of images to the conduction of heat. Proceedings of the London Mathematical Society s1-22, 1, 424–430.Google Scholar
    7. Carp, S. A., Prahl, S. A., and Venugopalan, V. 2004. Radiative transport in the delta-P
    1 approximation: accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media. Journal of Biomedical Optics 9, 3, 632–647.Google ScholarCross Ref
    8. Case, K. M., and Zweifel, P. F. 1967. Linear Transport Theory. Addison-Wesley.Google Scholar
    9. Case, K. M., de Hoffman, F., and Placzek, G. 1953. Introduction to the Theory of Neutron Diffusion, vol. 1. US Government Printing Office.Google Scholar
    10. Cerezo, E., Perez, F., Pueyo, X., Seron, F., and Sillion, F. 2005. A survey on participating media rendering techniques. The Visual Computer 21, 5, 303–328.Google ScholarDigital Library
    11. Chandrasekhar, S. 1958. On the diffuse reflection of a pencil of radiation by a plane-parallel atmosphere. Proceedings of the National Academy of Sciences of the United States of America 44, 9, 933–940.Google ScholarCross Ref
    12. Davison, B. 1957. Neutron Transport Theory. Oxford University Press.Google Scholar
    13. d’Eon, E., Luebke, D., and Enderton, E. 2007. Efficient rendering of human skin. In Rendering Techniques, 147–157. Google Scholar
    14. Donner, C., and Jensen, H. W. 2005. Light diffusion in multi-layered translucent materials. ACM Trans. Graph. 24 (July), 1032–1039. Google ScholarDigital Library
    15. Donner, C., and Jensen, H. W. 2006. Rapid simulation of steady-state spatially resolved reflectance and transmittance profiles of multilayered turbid materials. J. Opt. Soc. Am. A 23, 6 (Jun), 1382–1390.Google ScholarCross Ref
    16. Donner, C., and Jensen, H. W. 2007. Rendering translucent materials using photon diffusion. In Rendering Techniques, 243–251. Google Scholar
    17. Donner, C., Weyrich, T., d’Eon, E., Ramamoorthi, R., and Rusinkiewicz, S. 2008. A layered, heterogeneous reflectance model for acquiring and rendering human skin. ACM Trans. Graph. 27, 5 (Dec), 140:1–140:12. Google ScholarDigital Library
    18. Donner, C., Lawrence, J., Ramamoorthi, R., Hachisuka, T., Jensen, H. W., and Nayar, S. 2009. An empirical BSSRDF model. ACM Trans. Graph. 28 (July), 30:1–30:10. Google ScholarDigital Library
    19. Dudko, O., and Weiss, G. 2005. Estimation of anisotropic optical parameters of tissue in a slab geometry. Biophysical journal 88, 5, 3205–3211.Google ScholarCross Ref
    20. Durian, D. J., and Rudnick, J. 1999. Spatially resolved backscattering: implementation of extrapolation boundary condition and exponential source. J. Opt. Soc. Am. A 16, 4 (Apr), 837–844.Google ScholarCross Ref
    21. Einstein, A. 1905. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 17, 549–560.Google ScholarCross Ref
    22. Elliott, J. P. 1955. Milne’s problem with a point-source. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 228, 1174, 424–433.Google Scholar
    23. Farrell, T. J., Patterson, M. S., and Wilson, B. 1992. A diffusion theory model of spatially resolved, steady-state diffuse reflections for the noninvasive determination of tissue optical properties in vivo. Med. Phys. 19, 4, 879–888.Google ScholarCross Ref
    24. Graaff, R., and Rinzema, K. 2001. Practical improvements on photon diffusion theory: application to isotropic scattering. Physics in Medicine and Biology 46, 11, 3043.Google ScholarCross Ref
    25. Greengard, L., and Rokhlin, V. 1997. A fast algorithm for particle simulations. Journal of Computational Physics 135, 2, 280–292. Google ScholarDigital Library
    26. Grosjean, C. C., and Goovaerts, M. J. 1985. On the series expansion of certain types of integral transforms–Part I. Journal of Computational and Applied Mathematics 12, 277–298.Google ScholarCross Ref
    27. Grosjean, C. C. 1951. The Exact Mathematical Theory of Multiple Scattering of Particles in an Infinite Medium. Memoirs Kon. Vl. Ac. Wetensch. 13, 36.Google Scholar
    28. Grosjean, C. C. 1956. A high accuracy approximation for solving multiple scattering problems in infinite homogeneous media. Nuovo Cimento 3, 6 (Jun), 1262–1275.Google ScholarCross Ref
    29. Grosjean, C. C. 1957. Further development of a new approximate one-velocity theory of multiple scattering. Il Nuovo Cimento 5, 1, 83–101.Google ScholarCross Ref
    30. Grosjean, C. C. 1958. Multiple Isotropic Scattering in Convex Homogeneous Media Bounded by Vacuum. Proceedings of the Second International Conference on the Peaceful Uses of Atomic Energy 16, 413.Google Scholar
    31. Grosjean, C. C. 1963. A new approximate one-velocity theory for treating both isotropic and anisotropic multiple scattering problems. Part I. Infinite homogeneous scattering media. Tech. rep., Universiteit, Ghent.Google Scholar
    32. Hanrahan, P., and Krueger, W. 1993. Reflection from layered surfaces due to subsurface scattering. In Proceedings of ACM SIGGRAPH 1993, 165–174. Google Scholar
    33. Haskell, R. C., Svaasand, L. O., Tsay, T.-T., Feng, T.-C., McAdams, M. S., and Tromberg, B. J. 1994. Boundary conditions for the diffusion equation in radiative transfer. J. Opt. Soc. Am. A 11, 10, 2727–2741.Google ScholarCross Ref
    34. Hauck, C., and McClarren, R. 2010. Positive P
    N closures. SIAM Journal on Scientific Computing 32, 5, 2603–2626. Google ScholarDigital Library
    35. Jakob, W., Arbree, A., Moon, J. T., Bala, K., and Marschner, S. 2010. A radiative transfer framework for rendering materials with anisotropic structure. ACM Trans. Graph. 29 (July), 53:1–53:13. Google ScholarDigital Library
    36. Jensen, H. W., and Buhler, J. 2002. A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graphic. 21, 576–581. Google ScholarDigital Library
    37. Jensen, H. W., Legakis, J., and Dorsey, J. 1999. Rendering of wet materials. In Rendering Techniques, 273–282. Google Scholar
    38. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of ACM SIGGRAPH 2001, 511–518. Google Scholar
    39. Kajiya, J., and von Herzen, B. 1984. Ray tracing volume densities. In Computer Graphics (Proceedings of SIGGRAPH 84), ACM, 174. Google Scholar
    40. Kajiya, J. T. 1986. The rendering equation. In Computer Graphics (Proceedings of SIGGRAPH 86), 143–150. Google Scholar
    41. Kienle, A., and Patterson, M. S. 1997. Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium. J. Opt. Soc. Am. A 14, 1, 246–254.Google ScholarCross Ref
    42. Kienle, A. 2007. Anisotropic light diffusion: An oxymoron? Phys. Rev. Lett. 98, 21 (May), 218104.Google ScholarCross Ref
    43. Kim, A. D., and Ishimaru, A. 1998. Optical diffusion of continuous-wave, pulsed, and density waves in scattering media and comparisons with radiative transfer. Appl. Opt. 37, 22 (Aug), 5313–5319.Google ScholarCross Ref
    44. Langlands, A., and Mertens, T. 2007. Noise-free bssrdf rendering on the cheap. In ACM SIGGRAPH 2007 posters, ACM, 182. Google Scholar
    45. Larsen, E. 2010. Asymptotic diffusion and simplified P
    N approximations for diffusive and deep penetration problems. part 1: Theory. Transport Theory and Statistical Physics 39, 2, 110–163.Google ScholarCross Ref
    46. Levermore, C., and Pomraning, G. 1981. A flux-limited diffusion theory. The Astrophysical Journal 248, 321–334.Google ScholarCross Ref
    47. Li, H., Pellacini, F., and Torrance, K. 2005. A hybrid monte carlo method for accurate and efficient subsurface scattering. In Rendering Techniques, 283–290. Google Scholar
    48. Liemert, A., and Kienle, A. 2010. Light diffusion in N-layered turbid media: steady-state domain. Journal of Biomedical Optics 15, 2, 025003.Google Scholar
    49. Liemert, A., and Kienle, A. 2011. Analytical solution of the radiative transfer equation for infinite-space fluence. Physical Review A 83, 1, 015804.Google Scholar
    50. Malvagi, F., and Pomraning, G. C. 1991. Initial and boundary conditions for diffusive linear transport problems. Journal of Mathematical Physics 32, 3, 805.Google ScholarCross Ref
    51. Minerbo, G. 1978. Maximum entropy Eddington factors. J. Quant. Spectrosc. Radiat. Transfer 20, 6, 541–545.Google ScholarCross Ref
    52. Mishchenko, M. I. 2007. Radiative transfer: a new look of the old theory. In Radiative Transfer–V, Begell House, 1–30.Google Scholar
    53. Neulander, I. 2009. Smoother subsurface scattering. In SIGGRAPH 2009: Talks, ACM, 1. Google Scholar
    54. Patterson, M. S., Chance, B., and Wilson, B. C. 1989. Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl. Opt. 28, 12, 2331–2336.Google ScholarCross Ref
    55. Peraiah, A. 2002. An introduction to Radiative Transfer: Methods and applications in astrophysics. Cambridge Univ. Press.Google Scholar
    56. Pharr, M., and Hanrahan, P. 2000. Monte carlo evaluation of non-linear scattering equations for subsurface reflection. In Proceedings of ACM SIGGRAPH 2000, 75–84. Google Scholar
    57. Pierrat, R., Greffet, J.-J., and Carminati, R. 2006. Photon diffusion coefficient in scattering and absorbing media. J. Opt. Soc. Am. A 23, 5 (May), 1106–1110.Google ScholarCross Ref
    58. Pomraning, G. C., and Ganapol, B. D. 1995. Asymptotically consistent reflection boundary conditions for diffusion theory. Annals of Nuclear Energy 22, 12, 787–817.Google ScholarCross Ref
    59. Pomraning, G. C. 2000. The transport theory of beams. Transport Theory and Statistical Physics 29, 1, 1–41.Google ScholarCross Ref
    60. Prahl, S. 1988. Light Transport in Tissue. PhD thesis, University of Texas at Austin.Google Scholar
    61. Premože, S., Ashikhmin, M., Ramamoorthi, R., and Nayar, S. 2004. Practical rendering of multiple scattering effects in participating media. In Rendering Techniques, 363–374. Google Scholar
    62. Spott, T., and Svaasand, L. O. 2000. Collimated light sources in the diffusion approximation. Appl. Opt. 39, 34, 6453–6465.Google ScholarCross Ref
    63. Stam, J. 1995. Multiple scattering as a diffusion process. In Rendering Techniques, 41–50.Google Scholar
    64. Stam, J. 2001. An illumination model for a skin layer bounded by rough surfaces. In Rendering Techniques, 39–52. Google Scholar
    65. Tariq, S., Gardner, A., Llamas, I., Jones, A., Debevec, P., and Turk, G. 2006. Efficient estimation of spatially varying subsurface scattering parameters. In Vision, Modeling, and Visualization.Google Scholar
    66. van Rossum, M., and Nieuwenhuizen, T. 1999. Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion. Reviews of Modern Physics 71, 1, 313–371.Google ScholarCross Ref
    67. Wang, L. V., Jacques, S. L., and Zheng, L. 1995. MCML — monte carlo modeling of light transport in multi-layered tissues. Computer Methods in Programs and Biomedicine 47, 8, 131–146.Google ScholarCross Ref
    68. Weinberg, A. M., and Wigner, E. P. 1958. The Physical Theory of Neutron Chain Reactors. University of Chicago Press.Google Scholar
    69. Williams, M. M. R. 1971. Mathematical methods in particle transport theory. Butterworth.Google Scholar
    70. Williams, M. M. R. 1978. A synthetic scattering kernel for particle transport in absorbing media with anisotropic scattering. Journal of Physics D: Applied Physics 11, 2455.Google ScholarCross Ref
    71. Williams, M. M. R. 2005. The Milne problem with Fresnel reflection. Journal of Physics A: Mathematical and General 38, 17, 3841.Google ScholarCross Ref
    72. Williams, M. M. R. 2007. The searchlight problem in radiative transfer with internal reflection. Journal of Physics A: Mathematical and Theoretical 40, 24, 6407.Google ScholarCross Ref
    73. Williams, M. M. R. 2009. Three-dimensional transport theory: An analytical solution of an internal beam searchlight problem, III. Annals of Nuclear Energy 36, 8, 1256–1261.Google ScholarCross Ref
    74. Zhu, J., Pine, D., and Weitz, D. 1991. Internal reflection of diffusive light in random media. Physical Review A 44, 6, 3948–3959.Google ScholarCross Ref

ACM Digital Library Publication: