“A programmable system for artistic volumetric lighting” by Nowrouzezahrai, Johnson, Selle, Lacewell, Kaschalk, et al. …

  • ©Derek Nowrouzezahrai, Jared M Johnson, Andrew Selle, Dylan Lacewell, Michael Kaschalk, and Wojciech Jarosz




    A programmable system for artistic volumetric lighting



    We present a method for generating art-directable volumetric effects, ranging from physically-accurate to non-physical results. Our system mimics the way experienced artists think about volumetric effects by using an intuitive lighting primitive, and decoupling the modeling and shading of this primitive. To accomplish this, we generalize the physically-based photon beams method to allow arbitrarily programmable simulation and shading phases. This provides an intuitive design space for artists to rapidly explore a wide range of physically-based as well as plausible, but exaggerated, volumetric effects. We integrate our approach into a real-world production pipeline and couple our volumetric effects to surface shading.


    1. Angelidis, A., Neyret, F., Singh, K., and Nowrouzezahrai, D. 2006. A controllable, fast and stable basis for vortex based smoke simulation. In SCA, Eurographics Association, 25–32. Google Scholar
    2. Chandrasekar, S. 1960. Radiative Transfer. Dover Publications, New York, New York.Google Scholar
    3. Christensen, P. H., 2008. Point-based approximate color bleeding. Pixar Technical Memo 08-01, July.Google Scholar
    4. Cook, R. L., Carpenter, L., and Catmull, E. 1987. The reyes image rendering architecture. In Computer Graphics (Proceedings of SIGGRAPH 87), 95–102. Google Scholar
    5. Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 15–22. Google Scholar
    6. Gilland, J. 2009. Elemental Magic: The Art of Special Effects Animation. Focal Press.Google Scholar
    7. Hong, J.-M., Shinar, T., and Fedkiw, R. 2007. Wrinkled flames and cellular patterns. ACM Transactions on Graphics 26, 3 (July), 47:1–47:6. Google ScholarDigital Library
    8. Jarosz, W., Nowrouzezahrai, D., Sadeghi, I., and Jensen, H. W. 2011. A comprehensive theory of volumetric radiance estimation using photon points and beams. ACM Transactions on Graphics 30, 1 (Jan.), 5:1–5:19. Google ScholarDigital Library
    9. Jensen, H. W., and Christensen, P. H. 1998. Efficient simulation of light transport in scenes with participating media using photon maps. In Proceedings of SIGGRAPH 98, Computer Graphics Proceedings, Annual Conference Series, 311–320. Google Scholar
    10. Kajiya, J. T. 1986. The rendering equation. In Computer Graphics (Proceedings of SIGGRAPH 86), 143–150. Google Scholar
    11. Kerr, W. B., and Pellacini, F. 2009. Toward evaluating lighting design interface paradigms for novice users. ACM Transactions on Graphics 28, 3 (July), 26:1–26:9. Google ScholarDigital Library
    12. Kerr, W. B., and Pellacini, F. 2010. Toward evaluating material design interface paradigms for novice users. ACM Transactions on Graphics 29, 4 (July), 35:1–35:10. Google ScholarDigital Library
    13. Kerr, W. B., Pellacini, F., and Denning, J. D. 2010. Bendy-lights: Artistic control of direct illumination by curving light rays. Computer Graphics Forum 29, 4, 1451–1459. Google ScholarDigital Library
    14. Křivánek, J., Fajardo, M., Christensen, P. H., Tabellion, E., Bunnell, M., Larsson, D., and Kaplanyan, A. 2010. Global illumination across industries. In SIGGRAPH Courses, ACM.Google Scholar
    15. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Transactions on Graphics 23, 3 (Aug.), 449–456. Google ScholarDigital Library
    16. Obert, J., Křivánek, J., Pellacini, F., Sýkora, D., and Pattanaik, S. N. 2008. iCheat: A representation for artistic control of indirect cinematic lighting. Computer Graphics Forum 27, 4, 1217–1223. Google ScholarDigital Library
    17. Obert, J., Pellacini, F., and Pattanaik, S. N. 2010. Visibility editing for all-frequency shadow design. Comput. Graph. Forum 29, 4, 1441–1449. Google ScholarDigital Library
    18. Pellacini, F., Battaglia, F., Morley, R. K., and Finkelstein, A. 2007. Lighting with paint. ACM Transactions on Graphics 26, 2 (June), 9:1–9:14. Google ScholarDigital Library
    19. Pellacini, F. 2010. envylight: An interface for editing natural illumination. ACM Transactions on Graphics 29, 4 (July), 34:1–34:8. Google ScholarDigital Library
    20. Sadeghi, I., Pritchett, H., Jensen, H. W., and Tamstorf, R. 2010. An artist friendly hair shading system. ACM Transactions on Graphics 29, 4 (July), 56:1–56:10. Google ScholarDigital Library
    21. Schmid, J., Sumner, R. W., Bowles, H., and Gross, M. 2010. Programmable motion effects. ACM Transactions on Graphics 29, 4 (July), 57:1–57:9. Google ScholarDigital Library
    22. Selle, A., Mohr, A., and Chenney, S. 2004. Cartoon rendering of smoke animations. In Non-photorealistic Animation and Rendering, ACM, 57–60. Google Scholar
    23. Song, Y., Tong, X., Pellacini, F., and Peers, P. 2009. Subedit: A representation for editing measured heterogeneous sub-surface scattering. ACM Transactions on Graphics 28, 3 (July), 31:1–31:10. Google ScholarDigital Library
    24. Tabellion, E., and Lamorlette, A. 2004. An approximate global illumination system for computer generated films. ACM Transactions on Graphics 23, 3 (Aug.), 469–476. Google ScholarDigital Library
    25. Tessendorf, J., and Kowalski, M. 2010. Resolution independent volumes. In ACM SIGGRAPH 2010 Courses, SIGGRAPH, ACM.Google Scholar
    26. Treuille, A., McNamara, A., Popović, Z., and Stam, J. 2003. Keyframe control of smoke simulations. ACM Transactions on Graphics 22, 3 (July), 716–723. Google ScholarDigital Library
    27. Walter, B., Zhao, S., Holzschuch, N., and Bala, K. 2009. Single scattering in refractive media with triangle mesh boundaries. ACM Transactions on Graphics 28, 3 (July), 92:1–92:8. Google ScholarDigital Library
    28. Williams, L. 1978. Casting curved shadows on curved surfaces. In Computer Graphics (Proceedings of SIGGRAPH 78), 270–274. Google Scholar

ACM Digital Library Publication: