“A multiscale model of adaptation and spatial vision for realistic image display” by Pattanaik, Ferwerda, Fairchild and Greenberg

  • ©Sumanta N. Pattanaik, James A. Ferwerda, Mark D. Fairchild, and Donald P. Greenberg




    A multiscale model of adaptation and spatial vision for realistic image display



    In this paper we develop a computational model of adaptation and spatial vision for realistic tone reproduction. The model is based on a multiscale representation of pattern, luminance, and color processing in the human visual system. We incorporate the model into a tone reproduction operator that maps the vast ranges of radiances found in real and synthetic scenes into the small fixed ranges available on conventional display devices such as CRT’s and printers. The model allows the operator to address the two major problems in realistic tone reproduction: wide absolute range and high dynamic range scenes can be displayed; and the displayed images match our perceptions of the scenes at both threshold and suprathreshold levels to the degree possible given a particular display device. Although in this paper we apply our visual model to the tone reproduction problem, the model is general and can be usefully applied to image quality metrics, image compression methods, and perceptually-based image synthesis algorithms.


    1. Adelson, E.H. (1993) Perceptual organization and judgment of brightness. Science, 262, 2042-2044.
    2. Barlow, H.B. (1972) Dark and Light Adaptation: Psychophysics. In D. Jameson and L. Hurvich (Eds.), Handbook of Sensory Physiology, V. 7(4), New York: Springer, 2-27.
    3. Brady, N. and Field, D.J. (1995) What’s Constant in Contrast Constancy? The Effects of Scaling on the Perceived Contrast of Bandpass Patterns. Vision Res., 35(6), 739-756.
    4. Burt, RJ., and Adelson, E.H. (1983) The Laplacian Pyramid as a Compact Image Code. IEEE Transaction on Communication, 31(4), 532-540.
    5. Chiu, K., Herf, M., Shirley, R, Swamy, S., Wang, C., and Zimmerman, K. (1993) Spatially Nonuniform Scaling Functions for High Contrast Images. Proceedings Graphics Interface 93,245-254.
    6. Debevec, RE. and Malik, J. (1997) Recovering High Dynamic Range Radiance Maps from Images. Proceedings SIGGRAPH 97,369-378.
    7. Fairchild, M.D. (1998) Color Appearance Models. Reading, MA: Addison-Wesley.
    8. Ferwerda, J.A., Pattanaik, S.N., Shirley, R, and Greenberg, D. (1996) A Model of Visual Adaptation for Realistic Image Synthesis. Proceedings SIG- GRAPH 96, 249-258.
    9. Georgeson, M.A. and Sullivan, G.D. (1975) Contrast Constancy: Deblurring in Human Vision by Spatial Frequency Channels. J. Physiol., 252, 627- 656.
    10. Gilchrist, A.L. (1977) Perceived Lightness Depends on Perceived Spatial Arrangement. Science, 195, 185-187.
    11. Hunt, R.W.G. (1995) The Replvduction of Color. 5th edition, Kingstonupon-Thames, England: Fountain Press.
    12. Hurvich, L. (1981) Color Vision. Sunderland, MA: Sinauer Assoc.
    13. Jobson, D.J., Rahman, Z., and Woodell, G.A. (1996) Retinex Image Processing: Improved Fidelity to Direct Visual Observation. Proceedings 4th Color Imaging Conference, Society for Imaging Science and Technology, 124-126.
    14. Laming D. (1991) Contrast Sensitivity. In J.J. Kulikowski, V. Walsh, and I.J. Murray (Eds.) Limits’ of Vision, Vol. 5, Vision and Visual Dysfunction. Boca Raton, FL, CRC Press, 35-43.
    15. Lubin, J. (1995). A Visual Discrimination Model for Imaging System Design and Evaluation. In E. Peli (Ed.) Vision Models for Target Detection. Singapore, World Scientific, 245-283.
    16. Losada, M.A., and Mullen, K.T. (1994) The Spatial Tuning of Chromatic Mechanisms Identified by Simultaneous Masking. Vision Res., 34(3), 331-341.
    17. Mullen, K.T. (1985) The Contrast Sensitivity of Human Color Vision to Red-Green and Blue-Yellow Chromatic Gratings. J. Physiol., 359, 381-400.
    18. Peli, E. (1990) Contrast in Complex Images. J. Opt. Soc. Am. A, 7(10), 2032- 2040.
    19. Schlick, C. (1995) Quantization Techniques for High Dynamic Range Pictures. In G. Sakas, R Shirley, and S. Mueller, (Eds.), Photorealistic Rendering Techniques, Berlin: Springer-Verlag, 7-20.
    20. Shapley, R. and Enroth-Cugell, C. (1984) Visual Adaptation and Retinal Gain Controls. In N. Osborne and G. Chader (Eds.). P~vgress in Retinal Resemvh, V. 3, Oxford: Pergamon Press., 263-347.
    21. Spencer, G., Shirley, P., Zimmerman, K., Greenberg, D. P. (1995) Physically-based Glare Effects for Computer Generated Images. Proceedings SIG- GRAPH 95,325-334.
    22. Stevens, S.S. (1961) To Honor Fechner and Repeal His Law. Science, 133, 13 Jan., 80-86.
    23. Tumblin, J., and Rushmeier, H. (1993) Tone Reproduction for Realistic Images, IEEE Computer Graphics and Applications, 13(6), 42-48.
    24. Tumblin, J., Hodgkins, J. and Guenter, B. (1997) Display of High Contrast Images Using Models of Visual Adaptation. Visual proceedings SIGGRAPH 97, 154.
    25. van Nes F.L. and Bouman M.A. (1967) Spatial Modulation Transfer in the Human Eye. J. Opt. Soc. Am., 57,401-406.
    26. van der Horst, G.J.C. and Bouman, M.A. (1969) Spatiotemporal Chromaticity Discrimination. J. Opt. Soc. Am., 59(11), 1482-1488.
    27. Ward, G. (1994) A Contrast-based Scalefactor for Luminance Display. In RS. Heckbert (Ed.), Graphics Gems IV, Boston: Academic Press Professional.
    28. Ward-larson, G., Rushmeier, H., and Piatko, C. (1997) A Visibility Matching Tone Reproduction Operator for High Dynamic Range Scenes. IEEE Transactions on Visualization and Computer Graphics, 3(4), 291-306.
    29. Watson, A.B. and Solomon, J.A. (1997) Model of Visual Contrast Gain Control and Pattern Masking. J. Opt. Soc. Am. A, 14(9), 2379-2391.
    30. Westheimer, G. (1986) The Eye as an Optical Instrument. In K. Boff, L. Kaufman, and J. Thomas (Ed.), Handbook of Pelveption and Human Pelformance, New York: Wiley and Sons.
    31. Wilson, H.R. (1991). Psychophysical Models of Spatial Vision and Hyperacuity, in D. Regan (Ed.) Spatial Vision, Vol. 10, Vision and Visual Dysfunction. Boca Raton, FL, CRC Press, 64-81.
    32. Wyszecki G., and Stiles W.S. (1982) Color Science: Concepts and Methods, Quantitative Data and Formulae (2nd edition). New York: Wiley.

ACM Digital Library Publication: