“A multiscale approach to mesh-based surface tension flows” by Thürey, Wojtan, Gross and Turk

  • ©Nils Thürey, Chris Wojtan, Markus Gross, and Greg Turk




    A multiscale approach to mesh-based surface tension flows



    We present an approach to simulate flows driven by surface tension based on triangle meshes. Our method consists of two simulation layers: the first layer is an Eulerian method for simulating surface tension forces that is free from typical strict time step constraints. The second simulation layer is a Lagrangian finite element method that simulates sub-grid scale wave details on the fluid surface. The surface wave simulation employs an unconditionally stable, symplectic time integration method that allows for a high propagation speed due to strong surface tension. Our approach can naturally separate the grid- and sub-grid scales based on a volume-preserving mean curvature flow. As our model for the sub-grid dynamics enforces a local conservation of mass, it leads to realistic pinch off and merging effects. In addition to this method for simulating dynamic surface tension effects, we also present an efficient non-oscillatory approximation for capturing damped surface tension behavior. These approaches allow us to efficiently simulate complex phenomena associated with strong surface tension, such as Rayleigh-Plateau instabilities and crown splashes, in a short amount of time.


    1. Angst, R., Thürey, N., Botsch, M., and Gross, M. 2008. Robust and Efficient Wave Simulations on Deforming Meshes. Computer Graphics Forum 27 (7) (October), 6, 1895–1900.Google ScholarCross Ref
    2. Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26, 3, 100:1–100:7. Google ScholarDigital Library
    3. Botsch, M., Pauly, M., Kobbelt, L., Alliez, P., Lévy, B., Bischoff, S., and Rössl, C. 2007. In SIGGRAPH ’07: ACM SIGGRAPH 2007 courses, ACM, 1.Google Scholar
    4. Bridson, R. 2008. Fluid Simulation for Computer Graphics. A K Peters. Google ScholarDigital Library
    5. Bush, J. 2004. MIT Lecture Notes on Surface Tension. Massachusetts Institute of Technology.Google Scholar
    6. Clanet, C., and Villermaux, E. 2002. Life of a smooth liquid sheet. Journal of Fluid Mechanics 462, 307–340.Google ScholarCross Ref
    7. Cleary, P. W., Pyo, S. H., Prakash, M., and Koo, B. K. 2007. Bubbling and frothing liquids. ACM Trans. Graph. 26, 3, 97. Google ScholarDigital Library
    8. Cohen, J. M., and Molemaker, M. J. 2004. Practical simulation of surface tension flows. In SIGGRAPH ’04: Sketches, ACM, New York, NY, USA, 70. Google ScholarDigital Library
    9. Desbrun, M., Meyer, M., Schröder, P., and Barr, A. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. Proc. SIGGRAPH, 317–324. Google ScholarDigital Library
    10. Eckstein, I., Pons, J.-P., Tong, Y., Kuo, C.-C. J., and Desbrun, M. 2007. Generalized surface flows for mesh processing. In SGP ’07: Proceedings of the Eurographics symposium on Geometry processing, 183–192. Google ScholarDigital Library
    11. Enright, D. P., Marschner, S. R., and Fedkiw, R. P. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. 21, 3, 736–744. Google ScholarDigital Library
    12. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proceedings of ACM SIGGRAPH 2001, 23–30. Google ScholarDigital Library
    13. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. In Graphics Interface 1996, 204–212. Google ScholarDigital Library
    14. Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, 973–981. Google ScholarDigital Library
    15. Hochstein, J. I., and Williams, T. L. 1996. An implicit surface tension model. In AIAA Meeting Papers, vol. 96–0599.Google Scholar
    16. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. Proc. of ACM SIGGRAPH ’05 24, 3, 915–920. Google ScholarDigital Library
    17. Kang, M., Fedkiw, R. P., and Liu, X.-D. 2000. A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15, 3, 323–360. Google ScholarDigital Library
    18. Kass, M., and Miller, G. 1990. Rapid, stable fluid dynamics for computer graphics. In the Proceedings of ACM SIGGRAPH 90, 49–57. Google ScholarDigital Library
    19. Kim, T., and Carlson, M. 2007. A simple boiling module. In SCA ’07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, 27–34. Google ScholarDigital Library
    20. Kim, B., Liu, Y., Llamas, I., Jiao, X., and Rossignac, J. 2007. Simulation of bubbles in foam with the volume control method. ACM Trans. Graph. 26, 3, 98. Google ScholarDigital Library
    21. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. In Proceedings of ACM SIGGRAPH 2004, ACM Press, 457–462. Google ScholarDigital Library
    22. Mihalef, V., Metaxas, D., and Sussman, M. 2009. Simulation of two-phase flow with sub-scale droplet and bubble effects. In Proceedings of Eurographics 2009, CGF, vol. 28:2.Google Scholar
    23. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. Proc. of the ACM Siggraph/Eurographics Symposium on Computer Animation, 154–159. Google ScholarDigital Library
    24. Müller, M. 2009. Fast and robust tracking of fluid surfaces. Proc. of Symposium on Computer Animation. Google ScholarDigital Library
    25. Newmark, N. M. 1959. A method of computation for structural dynamics. ASCE J. Eng. Mech. Div. 85, 67–94.Google Scholar
    26. Osher, S., and Sethian, J. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49. Google ScholarDigital Library
    27. Peskin, C. S. 2002. The immersed boundary method. Acta Numerica 11, 1–39.Google ScholarCross Ref
    28. Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., and Fedkiw, R. 2008. Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. 27, 3, 1–9. Google ScholarDigital Library
    29. Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An unconditionally stable maccormack method. J. Sci. Comput. 35, 2–3, 350–371. Google ScholarDigital Library
    30. Stam, J. 1999. Stable fluids. In the Proceedings of ACM SIGGRAPH 99, 121–128. Google ScholarDigital Library
    31. Sussman, M., and Ohta, M. 2009. A stable and efficient method for treating surface tension in incompressible two-phase flow. J. Sci. Comput. 31, 4, 2447–2471. Google ScholarDigital Library
    32. Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. ACM Transactions on Graphics 25, 3 (July), 826–834. Google ScholarDigital Library
    33. Wang, H., Mucha, P. J., and Turk, G. 2005. Water drops on surfaces. In ACM SIGGRAPH 2005 Papers, ACM, New York, NY, USA, 921–929. Google ScholarDigital Library
    34. Wang, H., Miller, G., and Turk, G. 2007. Solving general shallow wave equations on surfaces. In Proc. of the ACM Siggraph/Eurographics Symposium on Computer Animation, 229–238. Google ScholarDigital Library
    35. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. In ACM SIGGRAPH 2009 papers, ACM, New York, NY, USA, 1–10. Google ScholarDigital Library
    36. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2010. Physics-inspired topology changes for thin fluid features. 1–8.Google Scholar
    37. Zheng, W., Yong, J.-H., and Paul, J.-C. 2006. Simulation of bubbles. In Proc. of the ACM Siggraph/Eurographics Symposium on Computer Animation, 325–333. Google ScholarDigital Library

ACM Digital Library Publication: