“A moving eulerian-lagrangian particle method for thin film and foam simulation” by Deng, Wang, Kong, Xiong, Xian, et al. …

  • ©

Conference:


Type(s):


Title:

    A moving eulerian-lagrangian particle method for thin film and foam simulation

Presenter(s)/Author(s):



Abstract:


    We present the Moving Eulerian-Lagrangian Particles (MELP), a novel mesh-free method for simulating incompressible fluid on thin films and foams. Employing a bi-layer particle structure, MELP jointly simulates detailed, vigorous flow and large surface deformation at high stability and efficiency. In addition, we design multi-MELP: a mechanism that facilitates the physically-based interaction between multiple MELP systems, to simulate bubble clusters and foams with non-manifold topological evolution. We showcase the efficacy of our method with a broad range of challenging thin film phenomena, including the Rayleigh-Taylor instability across double-bubbles, foam fragmentation with rim surface tension, recovery of the Plateau borders, Newton black films, as well as cyclones on bubble clusters.

References:


    1. Keith C Afas. 2018. Extending the Calculus of Moving Surfaces to Higher Orders. arXiv preprint arXiv:1806.02335 (2018).Google Scholar
    2. Nadir Akinci, Gizem Akinci, and Matthias Teschner. 2013. Versatile surface tension and adhesion for SPH fluids. ACM Transactions on Graphics (TOG) 32, 6 (2013), 1–8.Google ScholarDigital Library
    3. Laurent Belcour and Pascal Barla. 2017. A practical extension to microfacet theory for the modeling of varying iridescence. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1–14.Google ScholarDigital Library
    4. John WM Bush and Alexander E Hasha. 2004. On the collision of laminar jets: fluid chains and fishbones. Journal of fluid mechanics 511 (2004), 285–310.Google ScholarCross Ref
    5. Jingyu Chen, Victoria Kala, Alan Marquez-Razon, Elias Gueidon, David A. B. Hyde, and Joseph Teran. 2021. A Momentum-Conserving Implicit Material Point Method for Surface Tension with Contact Angles and Spatial Gradients. ACM TOG 40, 4 (2021), 1–16. Google ScholarDigital Library
    6. Jean-Marc Chomaz. 2001. The dynamics of a viscous soap film with soluble surfactant. Journal of Fluid Mechanics 442 (2001), 387–409.Google ScholarCross Ref
    7. Jonathan M Cohen, Sarah Tariq, and Simon Green. 2010. Interactive fluid-particle simulation using translating Eulerian grids. In Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games. 15–22.Google ScholarDigital Library
    8. Sylvie Cohen-Addad, Reinhard Höhler, and Olivier Pitois. 2013. Flow in foams and flowing foams. Annual Review of Fluid Mechanics 45 (2013), 241–267.Google ScholarCross Ref
    9. Y Couder, JM Chomaz, and M Rabaud. 1989. On the hydrodynamics of soap films. Physica D: Nonlinear Phenomena 37, 1–3 (1989), 384–405.Google ScholarDigital Library
    10. Fang Da, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2015. Double bubbles sans toil and trouble: Discrete circulation-preserving vortex sheets for soap films and foams. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1–9.Google ScholarDigital Library
    11. Fang Da, David Hahn, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2016. Surface-only liquids. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1–12.Google ScholarDigital Library
    12. R Elliot English, Linhai Qiu, Yue Yu, and Ronald Fedkiw. 2013. An adaptive discretization of incompressible flow using a multitude of moving Cartesian grids. J. Comput. Phys. 254 (2013), 107–154.Google ScholarDigital Library
    13. Robert Finn. 1999. Capillary surface interfaces. Notices of the AMS 46, 7 (1999), 770–781.Google Scholar
    14. Frederic Gibou, Ronald Fedkiw, and Stanley Osher. 2018. A review of level-set methods and some recent applications. J. Comput. Phys. 353 (2018), 82–109.Google ScholarCross Ref
    15. Andrew Glassner. 2000. Soap bubbles. 1. IEEE Computer Graphics and Applications 20, 5 (2000), 76–84.Google ScholarDigital Library
    16. Michael Grinfeld and Pavel Grinfeld. 2017. Modeling of Stability of Electrostatic and Magnetostatic Systems. Technical Report. US Army Research Laboratory Aberdeen Proving Ground United States.Google Scholar
    17. Pavel Grinfeld. 2009. Shape optimization and electron bubbles. Numerical Functional Analysis and Optimization 30, 7–8 (2009), 689–710.Google ScholarCross Ref
    18. P Grinfeld. 2010a. Hamiltonian dynamic equations for fluid films. Studies in Applied Mathematics 125, 3 (2010), 223–264.Google Scholar
    19. Pavel Grinfeld. 2010b. Variable thickness model for fluid films under large displacement. Physical review letters 105, 13 (2010), 137802.Google Scholar
    20. Pavel Grinfeld. 2010c. Viscous equations of fluid film dynamics. Computers Materials and Continua 19, 3 (2010), 239.Google Scholar
    21. Pavel Grinfeld. 2013. Introduction to tensor analysis and the calculus of moving surfaces. Springer.Google Scholar
    22. Pavel Grinfeld et al. 2009. Exact nonlinear equations for fluid films and proper adaptations of conservation theorems from classical hydrodynamics. Journal of Geometry and Symmetry in Physics 16 (2009), 1–21.Google Scholar
    23. Pavel Grinfeld et al. 2012. A better calculus of moving surfaces. Journal of Geometry and Symmetry in Physics 26 (2012), 61–69.Google Scholar
    24. David J Hill and Ronald D Henderson. 2016. Efficient fluid simulation on the surface of a sphere. ACM Transactions on Graphics (TOG) 35, 2 (2016), 1–9.Google ScholarDigital Library
    25. Cyrill W Hirt, Anthony A Amsden, and JL Cook. 1974. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of computational physics 14, 3 (1974), 227–253.Google ScholarCross Ref
    26. Weizhen Huang, Julian Iseringhausen, Tom Kneiphof, Ziyin Qu, Chenfanfu Jiang, and Matthias B. Hullin. 2020. Chemomechanical Simulation of Soap Film Flow on Spherical Bubbles. ACM Transactions on Graphics 39, 4 (2020). } Google ScholarDigital Library
    27. David A. B. Hyde, Steven W. Gagniere, Alan Marquez-Razon, and Joseph Teran. 2020. An Implicit Updated Lagrangian Formulation for Liquids with Large Surface Energy. ACM TOG 39, 4 (2020). Google ScholarDigital Library
    28. Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner. 2013. Implicit incompressible SPH. IEEE transactions on visualization and computer graphics 20, 3 (2013), 426–435.Google Scholar
    29. Sadashige Ishida, Peter Synak, Fumiya Narita, Toshiya Hachisuka, and Chris Wojtan. 2020. A Model for Soap Film Dynamics with Evolving Thickness. ACM Transactions on Graphics 39, 4, Article 31 (2020), 31:1–31:11 pages. } Google ScholarDigital Library
    30. Sadashige Ishida, Masafumi Yamamoto, Ryoichi Ando, and Toshiya Hachisuka. 2017. A hyperbolic geometric flow for evolving films and foams. ACM Transactions on Graphics (TOG) 36, 6 (2017), 1–11.Google ScholarDigital Library
    31. Kei Iwasaki, Keichi Matsuzawa, and Tomoyuki Nishita. 2004. Real-time rendering of soap bubbles taking into account light interference. In Proceedings Computer Graphics International, 2004. IEEE, 344–348.Google ScholarDigital Library
    32. Dariusz Jaszkowski and Janusz Rzeszut. 2003. Interference colours of soap bubbles. The Visual Computer 19, 4 (2003), 252–270.Google ScholarDigital Library
    33. Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The affine particle-in-cell method. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1–10.Google ScholarDigital Library
    34. M. Kness. 2008. ColorPy-A Python package for handling physical descriptions of color and light spectra. (2008).Google Scholar
    35. Stephan A Koehler, Sascha Hilgenfeldt, and HA Stone. 2004. Foam drainage on the microscale: I. Modeling flow through single Plateau borders. Journal of colloid and interface science 276, 2 (2004), 420–438.Google ScholarCross Ref
    36. Petros Koumoutsakos. 2005. Multiscale flow simulations using particles. Annu. Rev. Fluid Mech. 37 (2005), 457–487.Google ScholarCross Ref
    37. Andrew M Kraynik, Douglas A Reinelt, and Frank van Swol. 2004. Structure of random foam. Physical Review Letters 93, 20 (2004), 208301.Google ScholarCross Ref
    38. David IW Levin, Joshua Litven, Garrett L Jones, Shinjiro Sueda, and Dinesh K Pai. 2011. Eulerian solid simulation with contact. ACM Transactions on Graphics (TOG) 30, 4 (2011), 1–10.Google ScholarDigital Library
    39. S.J. Lind, R. Xu, P.K. Stansby, and B.D. Rogers. 2012. Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J. Comput. Phys. 231, 4 (2012), 1499 — 1523. Google ScholarDigital Library
    40. Dieter Morgenroth, Stefan Reinhardt, Daniel Weiskopf, and Bernhard Eberhardt. 2020. Efficient 2D simulation on moving 3D surfaces. In Computer Graphics Forum, Vol. 39. Wiley Online Library, 27–38.Google Scholar
    41. Daniel Ram, Theodore Gast, Chenfanfu Jiang, Craig Schroeder, Alexey Stomakhin, Joseph Teran, and Pirouz Kavehpour. 2015. A material point method for viscoelastic fluids, foams and sponges. In Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 157–163.Google ScholarDigital Library
    42. Milton J Rosen and Joy T Kunjappu. 2012. Surfactants and interfacial phenomena. John Wiley & Sons.Google Scholar
    43. Amaresh Sahu, Yannick AD Omar, Roger A Sauer, and Kranthi K Mandadapu. 2020. Arbitrary Lagrangian-Eulerian finite element method for curved and deforming surfaces: I. General theory and application to fluid interfaces. J. Comput. Phys. 407 (2020), 109253.Google ScholarDigital Library
    44. Robert I Saye and James A Sethian. 2013. Multiscale modeling of membrane rearrangement, drainage, and rupture in evolving foams. Science 340, 6133 (2013), 720–724.Google Scholar
    45. Robert I Saye and James A Sethian. 2016. Multiscale modelling of evolving foams. J. Comput. Phys. 315 (2016), 273–301.Google ScholarDigital Library
    46. Hagit Schechter and Robert Bridson. 2012. Ghost SPH for animating water. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1–8.Google ScholarDigital Library
    47. Nicholas Sharp and Keenan Crane. 2020. A Laplacian for Nonmanifold Triangle Meshes. Computer Graphics Forum (SGP) 39, 5 (2020).Google Scholar
    48. Brian E Smits and Gary W Meyer. 1992. Newton’s colors: simulating interference phenomena in realistic image synthesis. In Photorealism in Computer Graphics. Springer, 185–194.Google Scholar
    49. Barbara Solenthaler. 2011. SPH Based Shallow Water Simulation. The Eurographics Association.Google Scholar
    50. Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. 2013. A material point method for snow simulation. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1–10.Google ScholarDigital Library
    51. David V Svintradze. 2019. Shape dynamics of bouncing droplets. Scientific reports 9, 1 (2019), 1–10.Google Scholar
    52. Gilberto L Thomas, Julio M Belmonte, François Graner, James A Glazier, and Rita MC de Almeida. 2015. 3D simulations of wet foam coarsening evidence a self similar growth regime. Colloids and Surfaces A: Physicochemical and Engineering Aspects 473 (2015), 109–114.Google ScholarCross Ref
    53. Hui Wang, Yongxu Jin, Anqi Luo, Xubo Yang, and Bo Zhu. 2020. Codimensional surface tension flow using moving-least-squares particles. ACM Transactions on Graphics (TOG) 39, 4 (2020), 42–1.Google ScholarDigital Library
    54. Mengdi Wang, Yitong Deng, Xiangxin Kong, Aditya H. Prasad, Shiying Xiong, and Bo Zhu. 2021. Thin-Film Smoothed Particle Hydrodynamics Fluid. ACM Trans. Graph. 40, 4, Article 110 (jul 2021), 16 pages. Google ScholarDigital Library
    55. Stephanie Wang and Albert Chern. 2021. Computing minimal surfaces with differential forms. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–14.Google ScholarDigital Library
    56. D Weaire and R Phelan. 1996. The physics of foam. Journal of Physics: Condensed Matter 8, 47 (1996), 9519.Google ScholarCross Ref
    57. J. Z. Wu, H. Y. Ma, and M. D. Zhou. 2006. Vorticity and Vortex Dynamics. Springer.Google Scholar
    58. Jian Jun Xu, Zhilin Li, John Lowengrub, and Hongkai Zhao. 2006. A level-set method for interfacial flows with surfactant. J. Comput. Phys. 212, 2 (2006), 590–616.Google ScholarDigital Library
    59. Bowen Yang, William Corse, Jiecong Lu, Joshuah Wolper, and Chen-Fanfu Jiang. 2019. Real-Time Fluid Simulation on the Surface of a Sphere. Proceedings of the ACM on Computer Graphics and Interactive Techniques 2, 1 (2019), 1–17.Google ScholarDigital Library
    60. Jiaping You and Yue Yang. 2020. Modelling of the turbulent burning velocity based on Lagrangian statistics of propagating surfaces. Journal of Fluid Mechanics 887 (2020).Google Scholar
    61. Yonghao Yue, Breannan Smith, Christopher Batty, Changxi Zheng, and Eitan Grinspun. 2015. Continuum foam: A material point method for shear-dependent flows. ACM Transactions on Graphics (TOG) 34, 5 (2015), 1–20.Google ScholarDigital Library
    62. Y. L. Zhang, K. S. Yeo, B. C. Khoo, and C. Wang. 2001. 3D Jet Impact of Toroidal Bubbles. J. Comput. Phys. 166 (2001), 336–360.Google ScholarDigital Library
    63. Wen Zheng, Jun-Hai Yong, and Jean-Claude Paul. 2009. Simulation of bubbles. Graphical Models 71, 6 (2009), 229–239.Google ScholarDigital Library
    64. Bo Zhu, Ed Quigley, Matthew Cong, Justin Solomon, and Ronald Fedkiw. 2014. Codimensional surface tension flow on simplicial complexes. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1–11.Google ScholarDigital Library
    65. Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3 (2005), 965–972.Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: