“A moving least squares material point method with displacement discontinuity and two-way rigid body coupling” by Hu, Fang, Ge, Qu, Zhu, et al. …

  • ©Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana Tampubolon, and Chenfanfu Jiang

Conference:


Type:


Entry Number: 150

Title:

    A moving least squares material point method with displacement discontinuity and two-way rigid body coupling

Session/Category Title: Disorder Matter: From Shells to Rods and Grains


Presenter(s)/Author(s):



Abstract:


    In this paper, we introduce the Moving Least Squares Material Point Method (MLS-MPM). MLS-MPM naturally leads to the formulation of Affine Particle-In-Cell (APIC) [Jiang et al. 2015] and Polynomial Particle-In-Cell [Fu et al. 2017] in a way that is consistent with a Galerkin-style weak form discretization of the governing equations. Additionally, it enables a new stress divergence discretization that effortlessly allows all MPM simulations to run two times faster than before. We also develop a Compatible Particle-In-Cell (CPIC) algorithm on top of MLS-MPM. Utilizing a colored distance field representation and a novel compatibility condition for particles and grid nodes, our framework enables the simulation of various new phenomena that are not previously supported by MPM, including material cutting, dynamic open boundaries, and two-way coupling with rigid bodies. MLS-MPM with CPIC is easy to implement and friendly to performance optimization.

References:


    1. N. Akinci, M. Ihmsen, G. Akinci, B. Solenthaler, and M. Teschner. 2012. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans Graph 31, 4, Article 62 (July 2012), 8 pages. Google ScholarDigital Library
    2. V. Azevedo, C. Batty, and M. Oliveira. 2016. Preserving geometry and topology for fluid flows with thin obstacles and narrow gaps. ACM Trans Graph 35, 4 (2016), 97. Google ScholarDigital Library
    3. S. Band, C. Gissler, and M. Teschner. 2017. Moving least squares boundaries for SPH fluids. Virtual Reality Interactions and Physical Simulations (VRIPhys) (2017).Google Scholar
    4. B. Banerjee, J. Guilkey, T. Harman, J. Schmidt, and P. McMurtry. 2012. Simulation of impact and fragmentation with the material point method. arXiv preprint arXiv:1201.2452 (2012).Google Scholar
    5. Z. Bao, J. Hong, J. Teran, and R. Fedkiw. 2007. Fracturing rigid materials. IEEE Transactions on Visualization and Computer Graphics 13, 2 (2007). Google ScholarDigital Library
    6. C. Batty, F. Bertails, and R. Bridson. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans Graph 26, 3 (2007). Google ScholarDigital Library
    7. M. Becker, H. Tessendorf, and M. Teschner. 2009. Direct forcing for Lagrangian rigid-fluid coupling. IEEE Transactions on Visualization and Computer Graphics 15, 3 (May 2009), 493–503. Google ScholarDigital Library
    8. T. Belytschko, Y. Lu, and L. Gu. 1994. Element-free Galerkin methods. International journal for numerical methods in engineering 37, 2 (1994), 229–256.Google Scholar
    9. T. Belytschko and M. Tabbara. 1996. Dynamic fracture using element-free Galerkin methods. Internal J. Numer. Methods Engrg. 39, 6 (1996), 923–938.Google ScholarCross Ref
    10. J. Brackbill and H. Ruppel. 1986. FLIP: A method for adaptively zoned, Particle-In-Cell calculations of fluid flows in two dimensions. J Comp Phys 65 (1986), 314–343. Google ScholarDigital Library
    11. M. Carlson, P. Mucha, and G. Turk. 2004. Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans Graph 23, 3 (2004), 377–384. Google ScholarDigital Library
    12. Z. Chen, M. Yao, R. Feng, and H. Wang. 2014. Physics-inspired adaptive fracture refinement. ACM Trans Graph 33, 4 (2014), 113. Google ScholarDigital Library
    13. N. Chentanez, T. Goktekin, B. Feldman, and J. O’Brien. 2006. Simultaneous coupling of fluids and deformable bodies. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. Eurographics Association, 83–89. Google ScholarDigital Library
    14. G. Daviet and F. Bertails-Descoubes. 2016. A semi-implicit material point method for the continuum simulation of granular materials. ACM Trans Graph 35, 4 (2016), 102:1–102:13. Google ScholarDigital Library
    15. F. de Goes, C. Wallez, J. Huang, D. Pavlov, and M. Desbrun. 2015. Power particles: an incompressible fluid solver based on power diagrams. ACM Trans Graph 34, 4 (2015), 50–1. Google ScholarDigital Library
    16. B. Feldman, J. O’Brien, and B. Klingner. 2005. Animating gases with hybrid meshes. In ACM Trans Graph, Vol. 24. ACM, 904–909. Google ScholarDigital Library
    17. S. Fleishman, D. Cohen-Or, and C. Silva. 2005. Robust moving least-squares fitting with sharp features. In ACM Trans Graph, Vol. 24. ACM, 544–552. Google ScholarDigital Library
    18. C. Fu, Q. Guo, T. Gast, C. Jiang, and J. Teran. 2017. A polynomial Particle-In-Cell method. ACM Trans Graph 36, 6, Article 222 (2017), 12 pages. Google ScholarDigital Library
    19. M. Gao, A. Pradhana Tampubolon, C. Jiang, and E. Sifakis. 2017. An adaptive Generalized Interpolation Material Point Method for simulating elastoplastic materials. ACM Trans Graph 36, 6 (2017). Google ScholarDigital Library
    20. T. Gast, C. Schroeder, A. Stomakhin, C. Jiang, and J. Teran. 2015. Optimization integrator for large time steps. IEEE Trans Vis Comp Graph 21, 10 (2015), 1103–1115. Google ScholarDigital Library
    21. E. Guendelman, A. Selle, F. Losasso, and R. Fedkiw. 2005. Coupling water and smoke to thin deformable and rigid shells. ACM Trans Graph 24, 3 (July 2005), 973–981. Google ScholarDigital Library
    22. D. Hahn and C. Wojtan. 2015. High-resolution brittle fracture simulation with boundary elements. ACM Trans Graph 34, 4 (2015), 151. Google ScholarDigital Library
    23. D. Hahn and C. Wojtan. 2016. Fast approximations for boundary element based brittle fracture simulation. ACM Trans Graph 35, 4 (2016), 104. Google ScholarDigital Library
    24. J. Hegemann, C. Jiang, C. Schroeder, and J. Teran. 2013. A level set method for ductile fracture. In Proc ACM SIGGRAPH/Eurograp Symp Comp Anim. 193–201. Google ScholarDigital Library
    25. Y. Hu. 2018. Taichi: An Open-Source Computer Graphics Library. arXiv preprint arXiv:1804.09293 (2018).Google Scholar
    26. Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang. 2018. A moving least squares Material Point Method with displacement discontinuity and two-way rigid body coupling: supplementary document. 37, 4 (2018), 150. Google ScholarDigital Library
    27. A. Huerta, T. Belytschko, S. Fernández-Méndez, and T. Rabczuk. 2004. Meshfree methods. (2004).Google Scholar
    28. Thomas J.R. Hughes. 2012. The finite element method: Linear static and dynamic finite element analysis. Courier Corporation.Google Scholar
    29. G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. 131–140. Google ScholarDigital Library
    30. C. Jiang, T. Gast, and J. Teran. 2017a. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans Graph 36, 4 (2017). Google ScholarDigital Library
    31. C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The affine particle-in-cell method. ACM Trans Graph 34, 4 (2015), 51:1–51:10. Google ScholarDigital Library
    32. C. Jiang, C. Schroeder, and J. Teran. 2017b. An angular momentum conserving affine-particle-in-cell method. J. Comput. Phys. 338 (2017), 137–164. Google ScholarDigital Library
    33. C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A. Selle. 2016. The material point method for simulating continuum materials. In SIGGRAPH 2016 Course. 24:1–24:52. Google ScholarDigital Library
    34. Y. Kanamori, N. Cuong, and T. Nishita. 2011. Local optimization of distortions in wide-angle images using moving least-squares. In Proceedings of the 27th Spring Conference on Computer Graphics. ACM, 51–56. Google ScholarDigital Library
    35. P. Kaufmann, S. Martin, M. Botsch, and M. Gross. 2009. Flexible simulation of deformable models using discontinuous Galerkin FEM. Graphical Models 71, 4 (2009), 153–167. Google ScholarDigital Library
    36. G. Klár, T. Gast, A. Pradhana Tampubolon, C. Fu, C. Schroeder, C. Jiang, and J. Teran. 2016. Drucker-prager elastoplasticity for sand animation. ACM Trans Graph 35, 4 (2016), 103:1–103:12. Google ScholarDigital Library
    37. B. Klingner, B. Feldman, N. Chentanez, and J. O’Brien. 2006. Fluid animation with dynamic meshes. In ACM Trans Graph, Vol. 25. ACM, 820–825. Google ScholarDigital Library
    38. D. Koschier and J. Bender. 2017. Density maps for improved SPH boundary handling. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. ACM, 1. Google ScholarDigital Library
    39. D. Koschier, J. Bender, and N. Thuerey. 2017. Robust extended finite elements for complex cutting of deformables. ACM Trans Graph 36, 4 (2017), 55. Google ScholarDigital Library
    40. P. Lancaster and K. Salkauskas. 1981. Surfaces generated by moving least squares methods. Mathematics of computation 37, 155 (1981), 141–158.Google Scholar
    41. T. Langlois, S. An, K. Jin, and D. James. 2014. Eigenmode compression for modal sound models. ACM Trans Graph 33, 4 (2014), 40. Google ScholarDigital Library
    42. D. Levin. 1998. The approximation power of moving least-squares. Mathematics of Computation of the American Mathematical Society 67, 224 (1998), 1517–1531. Google ScholarDigital Library
    43. D. Levin. 2004. Mesh-independent surface interpolation. In Geometric modeling for scientific visualization. Springer, 37–49.Google Scholar
    44. C. Li, T. Zhang, and D. Goldman. 2013. A terradynamics of legged locomotion on granular media. Science 339, 6126 (2013), 1408–1412.Google Scholar
    45. W. Liu, S. Jun, and Y. Zhang. 1995. Reproducing kernel particle methods. International journal for numerical methods in fluids 20, 8-9 (1995), 1081–1106.Google Scholar
    46. F. Losasso, T. Shinar, A. Selle, and R. Fedkiw. 2006. Multiple interacting liquids. In ACM Trans Graph, Vol. 25. ACM, 812–819. Google ScholarDigital Library
    47. M. Macklin and M. Müller. 2013. Position based fluids. ACM Trans Graph 32, 4 (2013), 104:1–104:12. Google ScholarDigital Library
    48. M. Macklin, M. Müller, N. Chentanez, and T. Kim. 2014. Unified particle physics for real-time applications. ACM Trans Graph 33, 4 (2014), 153:1–153:12. Google ScholarDigital Library
    49. S. Martin, P. Kaufmann, M. Botsch, E. Grinspun, and M. Gross. 2010. Unified simulation of elastic rods, shells, and solids. In ACM Transactions on Graphics (TOG), Vol. 29. ACM, 39. Google ScholarDigital Library
    50. N. Mitchell, M. Aanjaneya, R. Setaluri, and E. Sifakis. 2015. Non-manifold level sets: A multivalued implicit surface representation with applications to self-collision processing. ACM Trans Graph 34, 6 (2015), 247. Google ScholarDigital Library
    51. N. Molino, Z. Bao, and R. Fedkiw. 2005. A virtual node algorithm for changing mesh topology during simulation. In ACM SIGGRAPH 2005 Courses. ACM, 4. Google ScholarDigital Library
    52. G. Moutsanidis, D. Kamensky, D.Z. Zhang, Y. Bazilevs, and C.C. Long. 2018. Modeling sub-grid scale discontinuities in the Material Point Method using a single velocity field. Submitted, received via private communication (2018).Google Scholar
    53. M. Müller, D. Charypar, and M. Gross. 2003. Particle-based fluid simulation for interactive applications. In Symp Comp Anim (SCA ’03). 154–159. Google ScholarDigital Library
    54. M. Müller and M. Gross. 2004. Interactive virtual materials. In Proceedings of Graphics Interface 2004 (GI ’04). Canadian Human-Computer Commu, 239–246. Google ScholarDigital Library
    55. M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. 2007. Position based dynamics. J Vis Comm Imag Repre 18, 2 (2007), 109–118. Google ScholarDigital Library
    56. M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. 2004. Point based animation of elastic, plastic and melting objects. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. Eurographics Association, 141–151. Google ScholarDigital Library
    57. K. Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM Trans Graph 32, 3 (2013), 27. Google ScholarDigital Library
    58. J. Nairn. 2003. Material point method calculations with explicit cracks. Computer Modeling in Engineering and Sciences 4, 6 (2003), 649–664.Google Scholar
    59. R. Narain, A. Golas, and M. Lin. 2010. Free-flowing granular materials with two-way solid coupling. ACM Trans Graph 29, 6 (2010), 173:1–173:10. Google ScholarDigital Library
    60. J. O’Brien, A. Bargteil, and J. Hodgins. 2002. Graphical modeling and animation of ductile fracture. In Proc ACM SIGGRAPH 2002. 291–294. Google ScholarDigital Library
    61. J. O’Brien and J. Hodgins. 1999. Graphical modeling and animation of brittle fracture. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 137–146. Google ScholarDigital Library
    62. M. Pauly, R. Keiser, B. Adams, P. Dutré, M. Gross, and L. J Guibas. 2005. Meshless animation of fracturing solids. ACM Trans Graph 24, 3 (2005), 957–964. Google ScholarDigital Library
    63. T. Pfaff, R. Narain, J. de Joya, and J. O’Brien. 2014. Adaptive tearing and cracking of thin sheets. ACM Trans Garph 33, 4 (2014), 110. Google ScholarDigital Library
    64. D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, and P. Kavehpour. 2015. A material point method for viscoelastic fluids, foams and sponges. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. 157–163. Google ScholarDigital Library
    65. A. Robinson-Mosher, R. English, and R. Fedkiw. 2009. Accurate tangential velocities for solid fluid coupling. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. ACM, 227–236. Google ScholarDigital Library
    66. A. Robinson-Mosher, T. Shinar, J. Gretarsson, J. Su, and R. Fedkiw. 2008. Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans Graph 27, 3 (2008), 46:1–46:9. Google ScholarDigital Library
    67. S. Sato, Y. Dobashi, K. Iwasaki, T. Yamamoto, and T. Nishita. 2014. Deformation of 2D flow fields using stream functions. In SIGGRAPH Asia 2014 Technical Briefs. ACM, 4. Google ScholarDigital Library
    68. S. Schaefer, T. McPhail, and J. Warren. 2006. Image deformation using moving least squares. In ACM Trans Graph, Vol. 25. ACM, 533–540. Google ScholarDigital Library
    69. R. Setaluri, M. Aanjaneya, S. Bauer, and E. Sifakis. 2014. SPGrid: A sparse paged grid structure applied to adaptive smoke simulation. ACM Trans Graph 33, 6 (2014), 205. Google ScholarDigital Library
    70. T. Shinar, C. Schroeder, and R. Fedkiw. 2008. Two-way coupling of rigid and deformable bodies. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 95–103. Google ScholarDigital Library
    71. E. Sifakis, K. Der, and R. Fedkiw. 2007. Arbitrary cutting of deformable tetrahedralized objects. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. Eurographics Association, 73–80. Google ScholarDigital Library
    72. M. Steffen, R. Kirby, and M. Berzins. 2008. Analysis and reduction of quadrature errors in the material point method (MPM). Int J Numer Meth Eng 76, 6 (2008), 922–948.Google ScholarCross Ref
    73. A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A material point method for snow simulation. ACM Trans Graph 32, 4 (2013), 102:1–102:10. Google ScholarDigital Library
    74. A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Trans Graph 33, 4 (2014), 138:1–138:11. Google ScholarDigital Library
    75. D. Sulsky, S. Zhou, and H. Schreyer. 1995. Application of a particle-in-cell method to solid mechanics. Comp Phys Comm 87, 1 (1995), 236–252.Google ScholarCross Ref
    76. A. Pradhana Tampubolon, T. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and K. Museth. 2017. Multi-species simulation of porous sand and water mixtures. ACM Trans Graph 36, 4 (2017). Google ScholarDigital Library
    77. D. Terzopoulos and K. Fleischer. 1988. Modeling inelastic deformation: viscolelasticity, plasticity, fracture. SIGGRAPH Comp Graph 22, 4 (1988), 269–278. Google ScholarDigital Library
    78. Y. Wang, C. Jiang, C. Schroeder, and J. Teran. 2014. An adaptive virtual node algorithm with robust mesh cutting. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. Eurographics Association, 77–85. Google ScholarDigital Library
    79. C. Wojtan, N. Thürey, M. Gross, and G. Turk. 2009. Deforming meshes that split and merge. In ACM Trans Graph, Vol. 28. ACM, 76. Google ScholarDigital Library
    80. J. Wretborn, R. Armiento, and K. Museth. 2017. Animation of crack propagation by means of an extended multi-body solver for the material point method. Computers & Graphics (2017). Google ScholarDigital Library
    81. J. Wu, R. Westermann, and C. Dick. 2015. A survey of physically based simulation of cuts in deformable bodies. In Comp Graph Forum, Vol. 34. Wiley Online Library, 161–187. Google ScholarDigital Library
    82. H. Xu and J. Barbič. 2014. Signed distance fields for polygon soup meshes. In Proceedings of Graphics Interface 2014. Canadian Information Processing Society, 35–41. Google ScholarDigital Library
    83. Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. 2015. Continuum foam: a material point method for shear-dependent flows. ACM Trans Graph 34, 5 (2015), 160:1–160:20. Google ScholarDigital Library
    84. O. Zarifi and C. Batty. 2017. A positive-definite cut-cell method for strong two-way coupling between fluids and deformable bodies. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. ACM, 7. Google ScholarDigital Library
    85. Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM Trans Graph 24, 3 (2005), 965–972. Google ScholarDigital Library
    86. Y. Zhu and S. Gortler. 2007. 3D deformation using moving least squares. (2007).Google Scholar


ACM Digital Library Publication:



Overview Page: