“A momentum-conserving implicit material point method for surface tension with contact angles and spatial gradients” by Chen, Kala, Marquez-Razon, Gueidon, Hyde, et al. …

  • ©Jingyu Chen, Victoria Kala, Alan Marquez-Razon, Elias Gueidon, David A. B. Hyde, and Joseph Teran




    A momentum-conserving implicit material point method for surface tension with contact angles and spatial gradients



    We present a novel Material Point Method (MPM) discretization of surface tension forces that arise from spatially varying surface energies. These variations typically arise from surface energy dependence on temperature and/or concentration. Furthermore, since the surface energy is an interfacial property depending on the types of materials on either side of an interface, spatial variation is required for modeling the contact angle at the triple junction between a liquid, solid and surrounding air. Our discretization is based on the surface energy itself, rather than on the associated traction condition most commonly used for discretization with particle methods. Our energy based approach automatically captures surface gradients without the explicit need to resolve them as in traction condition based approaches. We include an implicit discretization of thermomechanical material coupling with a novel particle-based enforcement of Robin boundary conditions associated with convective heating. Lastly, we design a particle resampling approach needed to achieve perfect conservation of linear and angular momentum with Affine-Particle-In-Cell (APIC) [Jiang et al. 2015]. We show that our approach enables implicit time stepping for complex behaviors like the Marangoni effect and hydrophobicity/hydrophilicity. We demonstrate the robustness and utility of our method by simulating materials that exhibit highly diverse degrees of surface tension and thermomechanical effects, such as water, wine and wax.


    1. A. Adamson and A. Gast. 1967. Physical chemistry of surfaces. Vol. 150. Interscience Publishers New York.Google Scholar
    2. R. Ando, N. Thurey, and R. Tsuruno. 2012. Preserving Fluid Sheets with Adaptively Sampled Anisotropic Particles. IEEE Trans Vis Comp Graph 18, 8 (Aug. 2012), 1202–1214.Google ScholarDigital Library
    3. O. Azencot, O. Vantzos, M. Wardetzky, M. Rumpf, and M. Ben-Chen. 2015. Functional thin films on surfaces. In Proc 14th ACM SIGGRAPH/Eurograph Symp Comp Anim. 137–146.Google Scholar
    4. C. Batty, A. Uribe, B. Audoly, and E. Grinspun. 2012. Discrete viscous sheets. ACM Trans Graph (TOG) 31, 4 (2012), 1–7.Google ScholarDigital Library
    5. T. Belytschko, W. Liu, B. Moran, and K. Elkhodary. 2013. Nonlinear finite elements for continua and structures. John Wiley and sons.Google Scholar
    6. J. Brackbill, D. Kothe, and C. Zemach. 1992. A continuum method for modeling surface tension. J Comp Phys 100, 2 (1992), 335–354.Google ScholarDigital Library
    7. G. Buscaglia and R. Ausas. 2011. Variational formulations for surface tension, capillarity and wetting. Comp Meth App Mech Eng 200, 45-46 (2011), 3011–3025.Google ScholarCross Ref
    8. A.B.D. Cassie and S. Baxter. 1944. Wettability of porous surfaces. Transactions of the Faraday society 40 (1944), 546–551.Google ScholarCross Ref
    9. C. R. A. Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi, A. Lefohn, D. Nowrouzezahrai, and T. Aila. 2017. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Trans Graph 36, 4 (2017), 1–12.Google ScholarDigital Library
    10. J. Chen, V. Kala, A. Marquez-Razon, E. Gueidon, D. Hyde, and J. Teran. 2021. Supplementary Technical Document. Technical Report.Google Scholar
    11. Y.-L. Chen, J. Meier, B. Solenthaler, and V.C. Azevedo. 2020. An Extended Cut-Cell Method for Sub-Grid Liquids Tracking with Surface Tension. ACM Trans Graph 39, 6, Article 169 (Nov. 2020), 13 pages. Google ScholarDigital Library
    12. E. Chernyaev. 1995. Marching cubes 33: Construction of topologically correct isosurfaces. Technical Report.Google Scholar
    13. P. Clausen, M. Wicke, J. R. Shewchuk, and J. F. O’Brien. 2013. Simulating liquids and solid-liquid interactions with Lagrangian meshes. ACM Transactions on Graphics (TOG) 32, 2 (2013), 17.Google ScholarDigital Library
    14. M. Corsini, P. Cignoni, and R. Scopigno. 2012. Efficient and Flexible Sampling with Blue Noise Properties of Triangular Meshes. IEEE Trans Vis Comp Graph 18, 6 (2012), 914–924. Google ScholarDigital Library
    15. F. Da, C. Batty, C. Wojtan, and E. Grinspun. 2015. Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams. ACM Trans Graph (SIGGRAPH 2015) (2015).Google Scholar
    16. F. Da, D. Hahn, C. Batty, C. Wojtan, and E. Grinspun. 2016. Surface-only liquids. ACM Trans Graph (TOG) 35, 4 (2016), 1–12.Google ScholarDigital Library
    17. G. Daviet and F. Bertails-Descoubes. 2016. A Semi-implicit Material Point Method for the Continuum Simulation of Granular Materials. ACM Trans Graph 35, 4 (2016), 102:1–102:13.Google ScholarDigital Library
    18. C. C. de Langavant, A. Guittet, M. Theillard, F. Temprano-Coleto, and F. Gibou. 2017. Level-set simulations of soluble surfactant driven flows. J Comp Phys 348 (2017), 271–297.Google ScholarDigital Library
    19. A. de Vaucorbeil, V. P. Nguyen, S. Sinaie, and J. Y. Wu. 2020. Chapter Two – Material point method after 25 years: Theory, implementation, and applications. Advances in Applied Mechanics, Vol. 53. Elsevier, 185 — 398. Google ScholarCross Ref
    20. M. Ding, X. Han, S. Wang, T. Gast, and J. Teran. 2019. A thermomechanical material point method for baking and cooking. ACM Trans Graph 38, 6 (2019), 192.Google ScholarDigital Library
    21. Y. Dukler, H. Ji, C. Falcon, and A. L Bertozzi. 2020. Theory for undercompressive shocks in tears of wine. Phys Rev Fluids 5, 3 (2020), 034002.Google ScholarCross Ref
    22. E. Edwards and R. Bridson. 2012. A high-order accurate Particle-In-Cell method. Int J Numer Meth Eng 90 (2012), 1073–1088.Google ScholarCross Ref
    23. Y. Fang, M. Li, Ming Gao, and Chenfanfu Jiang. 2019. Silly rubber: an implicit material point method for simulating non-equilibrated viscoelastic and elastoplastic solids. ACM Trans Graph 38, 4 (2019), 1–13.Google ScholarDigital Library
    24. R. Farahi, A. Passian, T. Ferrell, and T. Thundat. 2004. Microfluidic manipulation via Marangoni forces. Applied Phys Let 85, 18 (2004), 4237–4239.Google ScholarCross Ref
    25. Y. Fei, C. Batty, E. Grinspun, and C. Zheng. 2018. A multi-scale model for simulating liquid-fabric interactions. ACM Trans Graph 37, 4 (2018), 51:1–51:16. Google ScholarDigital Library
    26. Y. Fei, H. Maia, C. Batty, C. Zheng, and E. Grinspun. 2017. A multi-scale model for simulating liquid-hair interactions. ACM Trans. Graph. 36, 4 (2017), 56:1–56:17. Google ScholarDigital Library
    27. M. M. Francois, J. M. Sicilian, and D. B. Kothe. 2006. Modeling of thermocapillary forces within a volume tracking algorithm. In Modeling of Casting, Welding and Advanced Solidification Processes-XI (Opio, France). 935–942.Google Scholar
    28. C. Fu, Q. Guo, T. Gast, C. Jiang, and J. Teran. 2017. A Polynomial Particle-in-cell Method. ACM Trans Graph 36, 6 (Nov. 2017), 222:1–222:12.Google ScholarDigital Library
    29. M. Gao, A. Tampubolon, C. Jiang, and E. Sifakis. 2017b. An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Trans Graph 36, 6 (2017), 223:1–223:12. Google ScholarDigital Library
    30. Y. Gao, S. Li, L. Yang, H. Qin, and A. Hao. 2017a. An efficient heat-based model for solid-liquid-gas phase transition and dynamic interaction. Graphical Models 94 (2017), 14 — 24. Google ScholarDigital Library
    31. I. Georgiev, T. Ize, M. Farnsworth, R. Montoya-Vozmediano, A. King, B. Van Lommel, A. Jimenez, O. Anson, S. Ogaki, E. Johnston, A. Herubel, D. Russell, F. Servant, and M. Fajardo. 2018. Arnold: A brute-force production path tracer. ACM Transactions on Graphics (TOG) 37, 3 (2018), 1–12.Google ScholarDigital Library
    32. C. Gissler, A. Henne, S. Band, A. Peer, and M. Teschner. 2020a. An Implicit Compressible SPH Solver for Snow Simulation. ACM Trans Graph 39, 4, Article 36 (July 2020), 16 pages. Google ScholarDigital Library
    33. C. Gissler, A. Henne, S. Band, A. Peer, and M. Teschner. 2020b. An implicit compressible SPH solver for snow simulation. ACM Trans Graph (TOG) 39, 4 (2020), 36–1.Google ScholarDigital Library
    34. O. Gonzalez and A. Stuart. 2008. A first course in continuum mechanics. Cambridge University Press.Google Scholar
    35. Y. Gu and Y.-H. Yang. 2016. Physics Based Boiling Bubble Simulation. In SIGGRAPH ASIA 2016 Technical Briefs (Macau) (SA ’16). Association for Computing Machinery, New York, NY, USA, Article 5, 4 pages. Google ScholarDigital Library
    36. Q. Guo, X. Han, C. Fu, T. Gast, R. Tamstorf, and J. Teran. 2018. A material point method for thin shells with frictional contact. ACM Trans Graph 37, 4 (2018), 147. Google ScholarDigital Library
    37. F. Harlow and E. Welch. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fl 8, 12 (1965), 2182–2189.Google ScholarCross Ref
    38. H. Hochstetter and A. Kolb. 2017. Evaporation and Condensation of SPH-Based Fluids. In Proc ACM SIGGRAPH/Eurographics Symp Comp Anim (Los Angeles, California) (SCA ’17). Association for Computing Machinery, New York, NY, USA, Article 3, 9 pages. Google ScholarDigital Library
    39. M. Hopp-Hirschler, M. S. Shadloo, and U. Nieken. 2018. A Smoothed Particle Hydrodynamics approach for thermo-capillary flows. Comp Fluids 176 (2018), 1 — 19. Google ScholarCross Ref
    40. H. Hu and P. Eberhard. 2017. Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics. Comp Part Mech 4 (Oct 2017), 473–486. Issue 4. Google ScholarCross Ref
    41. W. Huang, J. Iseringhausen, T. Kneiphof, Z. Qu, C. Jiang, and M.B. Hullin. 2020. Chemomechanical Simulation of Soap Film Flow on Spherical Bubbles. ACM Trans Graph 39, 4, Article 41 (July 2020), 14 pages. Google ScholarDigital Library
    42. D.A.B. Hyde, S.W. Gagniere, A. Marquez-Razon, and J. Teran. 2020. An Implicit Updated Lagrangian Formulation for Liquids with Large Surface Energy. ACM Trans Graph 39, 6, Article 183 (Nov. 2020), 13 pages. Google ScholarDigital Library
    43. G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible Finite Elements for Robust Simulation of Large Deformation. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. 131–140.Google Scholar
    44. S. Ishida, P. Synak, F. Narita, T. Hachisuka, and C. Wojtan. 2020. A Model for Soap Film Dynamics with Evolving Thickness. ACM Trans Graph 39, 4, Article 31 (July 2020), 11 pages. Google ScholarDigital Library
    45. C. Jiang, T. Gast, and J. Teran. 2017. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans Graph 36, 4 (2017), 152.Google ScholarDigital Library
    46. C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The Affine Particle-In-Cell Method. ACM Trans Graph 34, 4 (2015), 51:1–51:10.Google ScholarDigital Library
    47. C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A. Selle. 2016. The Material Point Method for Simulating Continuum Materials. In ACM SIGGRAPH 2016 Course. 24:1–24:52.Google Scholar
    48. R. E. Johnson Jr. and R. H. Dettre. 1964. Contact angle hysteresis. III. Study of an idealized heterogeneous surface. J Phys Chem 68, 7 (1964), 1744–1750.Google ScholarCross Ref
    49. G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. 2016. Drucker-prager Elastoplasticity for Sand Animation. ACM Trans Graph 35, 4 (2016), 103:1–103:12.Google ScholarDigital Library
    50. D. Langbein. 2002. Capillary surfaces: shape – stability – dynamics, in particular under weightlessness. Vol. 178. Springer Science & Business Media.Google Scholar
    51. T. Lenaerts and P. Dutré. 2009. An architecture for unified SPH simulations. CW Reports (2009).Google Scholar
    52. W. Li, D. Liu, M. Desbrun, J. Huang, and X. Liu. 2020. Kinetic-based Multiphase Flow Simulation. IEEE Trans Vis Comp Graph (2020).Google Scholar
    53. F. Losasso, J. Talton, N. Kwatra, and R. Fedkiw. 2008. Two-Way Coupled SPH and Particle Level Set Fluid Simulation. IEEE Trans Visu Comp Graph 14, 4 (2008), 797–804.Google ScholarDigital Library
    54. T. Maeshima, Y. Kim, and T. I. Zohdi. 2020. Particle-scale numerical modeling of thermomechanical phenomena for additive manufacturing using the material point method. Computational Particle Mechanics (2020). Google ScholarCross Ref
    55. J. Monaghan. 1992. Smoothed particle hydrodynamics. Ann Rev Astron Astroph 30, 1 (1992), 543–574.Google ScholarCross Ref
    56. R. Narain, A. Golas, and M. Lin. 2010. Free-flowing granular materials with two-way solid coupling. ACM Trans Graph 29, 6 (2010), 173:1–173:10.Google ScholarDigital Library
    57. S. Nas and G. Tryggvason. 2003. Thermocapillary interaction of two bubbles or drops. Int J Multiphase Flow 29, 7 (2003), 1117–1135. Google ScholarCross Ref
    58. R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. 2002. Shape Distributions. ACM Trans. Graph. 21, 4 (Oct. 2002), 807–832. Google ScholarDigital Library
    59. A. Paiva, F. Petronetto, T. Lewiner, and G. Tavares. 2009. Particle-based viscoplastic fluid/solid simulation. Computer-Aided Design 41, 4 (2009), 306–314.Google ScholarDigital Library
    60. M. Pauly, R. Keiser, B. Adams, P. Dutré, M. Gross, and L. Guibas. 2005. Meshless animation of fracturing solids. ACM Trans Graph 24, 3 (2005), 957–964. Google ScholarDigital Library
    61. S. Pirk, M. Jarząbek, T. Hädrich, D.L. Michels, and W. Palubicki. 2017. Interactive Wood Combustion for Botanical Tree Models. 36, 6, Article 197 (Nov. 2017), 12 pages. Google ScholarDigital Library
    62. D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, and P. Kavehpour. 2015. A material point method for viscoelastic fluids, foams and sponges. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. 157–163.Google Scholar
    63. R. Rioboo, C. Tropea, and M. Marengo. 2001. Outcomes from a Drop Impact on Solid Surfaces. Atomization and Sprays 11, 2 (2001).Google Scholar
    64. M. A. Russell. 2018. A Smoothed Particle Hydrodynamics Model for the Simulation of Laser Fusion Additive Manufacturing Processes. Ph.D. Dissertation. UC Berkeley.Google Scholar
    65. C. Schreck and C. Wojtan. 2020. A practical method for animating anisotropic elastoplastic materials. Computer Graphics Forum – Eurographics 2020 39, 2 (2020).Google Scholar
    66. L. Scriven and C. Sternling. 1960. The marangoni effects. Nature 187, 4733 (1960), 186–188.Google Scholar
    67. A. Stomakhin, R. Howes, C. Schroeder, and J. Teran. 2012. Energetically consistent invertible elasticity. In Proc Symp Comp Anim. 25–32.Google ScholarDigital Library
    68. A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A Material Point Method for snow simulation. ACM Trans Graph 32, 4 (2013), 102:1–102:10.Google ScholarDigital Library
    69. A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Trans Graph 33, 4 (2014), 138:1–138:11.Google ScholarDigital Library
    70. D. Sulsky, Z. Chen, and H. Schreyer. 1994. A particle method for history-dependent materials. Comp Meth App Mech Eng 118, 1 (1994), 179–196.Google ScholarCross Ref
    71. M. Sussman and M. Ohta. 2009. A stable and efficient method for treating surface tension in incompressible two-phase flow. SIAM J Sci Comp 31, 4 (2009), 2447–2471.Google ScholarDigital Library
    72. A. Tartakovsky and P. Meakin. 2005. Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys Rev E 72 (Aug 2005), 026301. Issue 2. Google ScholarCross Ref
    73. D. Terzopoulos, J. Platt, and K. Fleischer. 1991. Heating and melting deformable models. The Journal of Visualization and Computer Animation 2, 2 (1991), 68–73.Google ScholarCross Ref
    74. J. Thomson. 1855. XLII. On certain curious motions observable at the surfaces of wine and other alcoholic liquors. London, Edinburgh, and Dublin Phil Mag J Sci 10, 67 (1855), 330–333.Google ScholarCross Ref
    75. N. Thürey, C. Wojtan, M. Gross, and G. Turk. 2010. A multiscale approach to mesh-based surface tension flows. ACM Trans Graph (TOG) 29, 4 (2010), 1–10.Google ScholarDigital Library
    76. M. Tong and D. J. Browne. 2014. An incompressible multi-phase smoothed particle hydrodynamics (SPH) method for modelling thermocapillary flow. Int J Heat Mass Transfer 73 (2014), 284 — 292. Google ScholarCross Ref
    77. D. C. Venerus and D. N. Simavilla. 2015. Tears of wine: New insights on an old phenomenon. Scientific reports 5 (2015), 16162.Google Scholar
    78. C. Wang, Q. Zhang, H. Xiao, and Q. Shen. 2012. Simulation of multiple fluids with solidliquid phase transition. Comp Anim Virtual Worlds 23, 3-4 (2012), 279–289. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cav.1457 Google ScholarDigital Library
    79. H. Wang, Y. Jin, A. Luo, X. Yang, and B. Zhu. 2020a. Codimensional Surface Tension Flow Using Moving-Least-Squares Particles. ACM Trans Graph 39, 4, Article 42 (July 2020), 16 pages. Google ScholarDigital Library
    80. H. Wang, G. Miller, and G. Turk. 2007. Solving General Shallow Wave Equations on Surfaces (SCA ’07). Eurographics Association, Goslar, DEU, 229–238.Google Scholar
    81. H. Wang, P. J. Mucha, and G. Turk. 2005. Water Drops on Surfaces. ACM Tran. Graph 24, 3 (July 2005), 921–929. Google ScholarDigital Library
    82. S. Wang, M. Ding, T. Gast, L. Zhu, S. Gagniere, C. Jiang, and J. Teran. 2019. Simulation and Visualization of Ductile Fracture with the Material Point Method. Proceedings of the ACM on Computer Graphics and Interactive Techniques 2, 2, 18.Google ScholarDigital Library
    83. X. Wang, M. Li, Y. Fang, X. Zhang, M. Gao, M. Tang, D. Kaufman, and C. Jiang. 2020b. Hierarchical optimization time integration for CFL-rate MPM stepping. ACM Trans Graph (TOG) 39, 3 (2020), 1–16.Google ScholarDigital Library
    84. X. Wang, Y. Qiu, S.R. Slattery, Y. Fang, M. Li, S.-C. Zhu, Y. Zhu, M. Tang, D. Manocha, and C. Jiang. 2020c. A Massively Parallel and Scalable Multi-GPU Material Point Method. ACM Trans Graph 39, 4, Article 30 (July 2020), 15 pages. Google ScholarDigital Library
    85. C. Wojtan, N. Thürey, M. Gross, and G. Turk. 2010. Physics-inspired topology changes for thin fluid features. ACM Trans Graph 29, 4 (2010), 50:1–50:8. Google ScholarDigital Library
    86. J. Wolper, Y. Chen, M. Li, Y. Fang, Z. Qu, J. Lu, M. Cheng, and C. Jiang. 2020. AnisoMPM: animating anisotropic damage mechanics. ACM Trans. Graph. 39, 4, Article 37 (2020).Google ScholarDigital Library
    87. J. Wolper, Y. Fang, M. Li, J. Lu, M. Gao, and C. Jiang. 2019. CD-MPM: continuum damage material point methods for dynamic fracture animation. ACM Trans. Graph. 38, 4, Article 119 (2019).Google ScholarDigital Library
    88. S. Yang, X. He, H. Wang, S. Li, G. Wang, E. Wu, and K. Zhou. 2016a. Enriching SPH simulation by approximate capillary waves. In Symp Comp Anim. 29–36.Google Scholar
    89. T. Yang, J. Chang, M. C. Lin, R. R. Martin, J. J. Zhang, and S.-M. Hu. 2017. A unified particle system framework for multi-phase, multi-material visual simulations. ACM Transactions on Graphics (TOG) 36, 6 (2017), 224.Google ScholarDigital Library
    90. T. Yang, M. C. Lin, R. R. Martin, J. Chang, and S.-M. Hu. 2016b. Versatile Interactions at Interfaces for SPH-Based Simulations (SCA ’16). Eurographics Association, Goslar, DEU, 57–66.Google Scholar
    91. T. Young. 1805. III. An essay on the cohesion of fluids. Phil Trans Royal Soc London 95 (1805), 65–87. arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1805.0005 Google ScholarCross Ref
    92. Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. 2015. Continuum foam: a material point method for shear-dependent flows. ACM Trans Graph 34, 5 (2015), 160:1–160:20.Google ScholarDigital Library
    93. T. Zhang, J. Shi, C. Wang, H. Qin, and C. Li. 2017. Robust Gas Condensation Simulation with SPH based on Heat Transfer. In Pacific Graphics Short Papers, Jernej Barbic, Wen-Chieh Lin, and Olga Sorkine-Hornung (Eds.). The Eurographics Association, 27–32. Google ScholarDigital Library
    94. W. Zheng, B. Zhu, B. Kim, and R. Fedkiw. 2015. A new incompressibility discretization for a hybrid particle MAC grid representation with surface tension. J Comp Phys 280 (2015), 96–142.Google ScholarDigital Library
    95. B. Zhu, E. Quigley, M. Cong, J. Solomon, and R. Fedkiw. 2014. Codimensional surface tension flow on simplicial complexes. ACM Trans Graph (TOG) 33, 4 (2014), 1–11.Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: