“A compressive light field projection system” by Hirsch, Wetzstein and Raskar

  • ©Matthew Hirsch, Gordon Wetzstein, and Ramesh Raskar



Session Title:



    A compressive light field projection system




    For about a century, researchers and experimentalists have strived to bring glasses-free 3D experiences to the big screen. Much progress has been made and light field projection systems are now commercially available. Unfortunately, available display systems usually employ dozens of devices making such setups costly, energy inefficient, and bulky. We present a compressive approach to light field synthesis with projection devices. For this purpose, we propose a novel, passive screen design that is inspired by angle-expanding Keplerian telescopes. Combined with high-speed light field projection and nonnegative light field factorization, we demonstrate that compressive light field projection is possible with a single device. We build a prototype light field projector and angle-expanding screen from scratch, evaluate the system in simulation, present a variety of results, and demonstrate that the projector can alternatively achieve super-resolved and high dynamic range 2D image display when used with a conventional screen.


    1. Akeley, K., Watt, S. J., Girshick, A. R., and Banks, M. S. 2004. A Stereo Display Prototype with Multiple Focal Distances. ACM Trans. Graph. (SIGGRAPH) 23, 804–813. Google ScholarDigital Library
    2. Balogh, T. 2006. The HoloVizio System. In Proc. SPIE 6055, vol. 60550U. Google ScholarDigital Library
    3. Berthouzoz, F., and Fattal, R. 2012. Resolution Enhancement by Vibrating Displays. ACM Trans. Graph. 31, 2, 15:1–14. Google ScholarDigital Library
    4. Bogaert, L., Meuret, Y., Roelandt, S., Avci, A., Smet, H. D., and Thienpont, H. 2010. Single Projector Multiview Displays: Directional Illumination Compared to Beam Steering. In Proc. SPIE 7524, vol. 75241R. Google ScholarDigital Library
    5. Cichocki, A., Zdunek, R., Phan, A. H., and ichi Amari, S. 2009. Nonnegative Matrix and Tensor Factorizations. Wiley. Google Scholar
    6. Cossairt, O., and Favalora, G., 2006. Minimized-Thickness Angular Scanner of Electromagnetic Radiation, Apr. 26. US Patent App. 11/380,296.Google Scholar
    7. Cossairt, O. S., Napoli, J., Hill, S. L., Dorval, R. K., and Favalora, G. E. 2007. Occlusion-Capable Multiview Volumetric Three-Dimensional Display. Applied Optics 46, 8, 1244–1250. Google ScholarDigital Library
    8. Damera-Venkata, N., and Chang, N. L. 2009. Display Supersampling. ACM Trans. Graph. 28, 1, 9:1–9:19. Google ScholarDigital Library
    9. Dodgson, N. A., Moore, J. R., Lang, S. R., Martin, G., and Canepa, P. 2000. A time-sequential multi-projector autostereoscopic display. Journal of the SID 8, 2, 169–176.Google Scholar
    10. Eichenlaub, J. B. 2005. Optical System Which Projects Small Volumetric Images to Very Large Size. In Electronic Imaging 2005, International Society for Optics and Photonics, 313–322. Google ScholarDigital Library
    11. Funk, W. 2012. History of Autostereoscopic Cinema. In Proc. SPIE 8288, vol. 82880R.Google ScholarCross Ref
    12. Gabor, D., 1944. Optical System Composed of Lenticules, June 13. US Patent 2,351,034. Google ScholarDigital Library
    13. Grosse, M., Wetzstein, G., Grundhöfer, A., and Bimber, O. 2010. Coded Aperture Projection. ACM Trans. Graph. 29, 22:1–22:12. Google ScholarDigital Library
    14. Hecht, E. 2002. Optics, fourth edition. Addison Wesley.Google Scholar
    15. Heide, F., Wetzstein, G., Raskar, R., and Heidrich, W. 2013. Adaptive Image Synthesis for Compressive Displays. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4, 132:1–132:12. Google ScholarDigital Library
    16. Heide, F., Gregson, J., Wetzstein, G., Raskar, R., and Heidrich, W. 2014. A Compressive Multi-Mode Superresolution Display. ArXiv e-prints (Apr.).Google Scholar
    17. Hembd-Sölner, C., Stevens, R. F., and Hutley, M. C. 1999. Imaging Properties of the Gabor Superlens. Journal of Optics A: Pure and Applied Optics 1, 1, 94. Google ScholarDigital Library
    18. Hong, J., Kim, Y., Park, S.-G., Hong, J.-H., Min, S.-W., Lee, S.-D., and Lee, B. 2010. 3D/2D Convertible Projection-type Integral Imaging using Concave Half Mirror Array. Optics Express 18.Google Scholar
    19. Hsu, F.-H., 2008. Three-Dimensional (3D) Image Projection. US patent 7425070 B2.Google Scholar
    20. Ives, H., 1903. Parallax Stereogram and Process of Making Same. US patent 725,567.Google Scholar
    21. Ives, H. 1928. Camera for Making Parallax Panoramagrams. J. Opt. Soc. Amer. 17, 435–439. Google ScholarDigital Library
    22. Jacobs, A., Mather, J., Winlow, R., Montgomery, D., Jones, G., Willis, M., Tillin, M., Hill, L., Khazova, M., Stevenson, H., and Bourhill, G. 2003. 2D/3D switchable displays. Sharp Technical Journal, 4, 15–18. Google ScholarDigital Library
    23. Jones, A., McDowall, I., Yamada, H., Bolas, M., and Debevec, P. 2007. Rendering for an Interactive 360° Light Field Display. ACM Trans. Graph. (SIGGRAPH) 26, 40:1–40:10. Google ScholarDigital Library
    24. Jones, A., Liu, J., Busch, J., Debevec, P., Bolas, M., and Yu, X., 2013. An Autostereoscopic Projector Array Optimized for 3D Facial Display. SIGGRAPH Emerging Technologies. Google ScholarDigital Library
    25. Jurik, J., Jones, A., Bolas, M., and Debevec, P. 2011. Prototyping a Light Field Display Involving Direct Observation of a Video Projector Array. In Proc. ProCams, IEEE.Google Scholar
    26. Kim, Y., Hong, K., Yeom, J., Hong, J., Jung, J.-H., Lee, Y. W., Park, J.-H., and Lee, B. 2012. A Frontal Projection-type Three-dimensional Display. Optics Express 20.Google Scholar
    27. Kimura, H., Uchiyama, T., and Yoshikawa, H. 2006. Laser Produced 3D Display in the Air. In SIGGRAPH Emerging Technologies, ACM, 20. Google ScholarDigital Library
    28. Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-Adaptive Parallax Barriers: Optimizing Dual-Layer 3D Displays using Low-Rank Light Field Factorization. ACM Trans. Graph. (SIGGRAPH Asia) 28, 5, 1–10. Google ScholarDigital Library
    29. Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization Fields: Dynamic Light Field Display Using Multi-Layer LCDs. ACM Trans. Graph. (SIGGRAPH Asia) 30, 6, 186. Google ScholarDigital Library
    30. Lee, D. D., and Seung, S. 1999. Learning the Parts of Objects by Non-negative Matrix Factorization. Nature 401, 788–791.Google ScholarCross Ref
    31. Lippmann, G. 1908. La Photographie Intégrale. Academie des Sciences 146, 446–451.Google Scholar
    32. Maimone, A., Wetzstein, G., Lanman, D., Hirsch, M., Raskar, R., and Fuchs, H. 2013. Focus 3D: Compressive Accommodation Display. ACM Trans. Graph. (TOG) 32, 5, 153:1–153:13. Google ScholarDigital Library
    33. Masia, B., Wetzstein, G., Didyk, P., and Gutierrez, D. 2013. A survey on computational displays: Pushing the boundaries of optics, computation, and perception. Computers & Graphics 37, 8, 1012–1038. Google ScholarDigital Library
    34. Matusik, W., and Pfister, H. 2004. 3D TV: a Scalable System for Real-time Acquisition, Transmission, and Autostereoscopic Display of Dynamic Scenes. ACM Trans. on Graph. (SIGGRAPH) 23, 814–824. Google ScholarDigital Library
    35. Meuret, Y., Bogaert, L., Roelandt, S., Vanderheijden, J., Avci, A., Smet, H. D., and Thienpont, H. 2010. LED Projection Architectures for Stereoscopic and Multiview 3D Displays. In Proc. SPIE 7690, vol. 769007.Google Scholar
    36. Nims, J., and Lo, A., 1972. 3-D Screen and System. US patent 3,814,513.Google Scholar
    37. Perlin, K., Paxia, S., and Kollin, J. S. 2000. An Autostereoscopic Display. In ACM SIGGRAPH, ACM, 319–326. Google ScholarDigital Library
    38. Sajadi, B., Gopi, M., and Majumder, A. 2012. Edge-Guided Resolution Enhancement in Projectors via Optical Pixel Sharing. ACM Trans. Graph. 31, 4, 79. Google ScholarDigital Library
    39. Sajadi, B., Lai, D.-Q., Iher, A., Gopi, M., and Majumder, A. 2013. Image Enhancement in Projectors Via Optical Pixel Shift and Overlay. In Proc. IEEE ICCP, 1–8.Google Scholar
    40. Sandin, D. J., Margolis, T., Ge, J., Girado, J., Peterka, T., and DeFanti, T. A. 2005. The Varrier Autostereoscopic Virtual Reality Display. ACM Trans. Graph. (SIGGRAPH) 24, 3, 894–903. Google ScholarDigital Library
    41. Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., and Vorozcovs, A. 2004. High Dynamic Range Display Systems. ACM Trans. Graph. (SIGGRAPH) 23, 3, 760–768. Google ScholarDigital Library
    42. Smoot, L. S., Smithwick, Q., and Reetz, D. 2011. A Volumetric Display Based On A Rim-Driven Varifocal Beamsplitter And LED Backlit LCD. In SIGGRAPH Emerging Technologies, ACM, 22. Google ScholarDigital Library
    43. Sullivan, A. 2003. A Solid-State Multi-Planar Volumetric Display. In SID Digest, vol. 32, 207–211.Google Scholar
    44. Tompkin, J., Heinzle, S., Kautz, J., and Matusik, W. 2013. Content-Adaptive Lenticular Prints. ACM Trans. Grap. (TOG) 32, 4, 133. Google ScholarDigital Library
    45. Travis, A. R. L. 1990. Autostereoscopic 3-D Display. OSA Appl. Opt. 29, 29, 4341–4342.Google ScholarCross Ref
    46. Urey, H., Chellappan, K. V., Erden, E., and Surman, P. 2011. State of the Art in Stereoscopic and Autostereoscopic Displays. Proc. IEEE 99, 4, 540–555.Google ScholarCross Ref
    47. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic Image Synthesis for Attenuation-based Light Field and High Dynamic Range Displays. ACM Trans. Graph. (SIGGRAPH). Google ScholarDigital Library
    48. Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor Displays: Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting. ACM Trans. Graph. (SIGGRAPH) 31, 1–11. Google ScholarDigital Library
    49. Yang, R., Huang, X., Li, S., and Jaynes, C. 2008. Toward the Light Field Display: Autostereoscopic Rendering via a Cluster of Projectors. IEEE TVCG 14, 1, 84–96. Google ScholarDigital Library

ACM Digital Library Publication: