“A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance” by Holroyd, Lawrence and Zickler

  • ©Michael Holroyd, Jason Lawrence, and Todd Zickler

Conference:


Type:


Title:

    A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance

Presenter(s)/Author(s):



Abstract:


    We present a novel optical setup and processing pipeline for measuring the 3D geometry and spatially-varying surface reflectance of physical objects. Central to our design is a digital camera and a high frequency spatially-modulated light source aligned to share a common focal point and optical axis. Pairs of such devices allow capturing a sequence of images from which precise measurements of geometry and reflectance can be recovered. Our approach is enabled by two technical contributions: a new active multiview stereo algorithm and an analysis of light descattering that has important implications for image-based reflectometry. We show that the geometry measured by our scanner is accurate to within 50 microns at a resolution of roughly 200 microns and that the reflectance agrees with reference data to within 5.5%. Additionally, we present an image relighting application and show renderings that agree very well with reference images at light and view positions far from those that were initially measured.

References:


    1. Alldrin, N., Zickler, T., and Kriegman, D. 2008. Photometric stereo with non-parametric and spatially-varying reflectance. In Computer Vision and Pattern Recognition.Google Scholar
    2. Brown, M., and Lowe, D. 2005. Unsupervised 3D object recognition and reconstruction in unordered datasets. In Proc. Int. Conf. on 3D Digital Imaging and Modelling (3DIM). Google ScholarDigital Library
    3. Chen, T., Lensch, H. P. A., Fuchs, C., and Seidel, H.-P. 2007. Polarization and phase-shifting for 3d scanning of translucent objects. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google Scholar
    4. Chen, T., Seidel, H.-P., and Lensch, H. P. A. 2008. Modulated phase-shifting for 3D scanning. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google Scholar
    5. Cook, R. L., and Torrance, K. E. 1981. A reflectance model for computer graphics. Computer Graphics (SIGGRAPH 1981), 7–24. Google ScholarDigital Library
    6. Dana, K. J., van Ginneken, B., Nayar, S. K., and Koenderink, J. J. 1999. Reflectance and texture of real-world surfaces. ACM Transactions on Graphics 18, 1, 1–34. Google ScholarDigital Library
    7. Davis, J., Nehab, D., Ramamoorthi, R., and Rusinkiewicz, S. 2005. Spacetime stereo: A unifying framework for depth from triangulation. IEEE Trans. on Pattern Analysis and Machine Intelligence. Google ScholarDigital Library
    8. Debevec, P. E., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. In SIGGRAPH, 145–156. Google ScholarDigital Library
    9. Esteban, C. H., Vogiatzis, G., and Cipolla, R. 2008. Multiview photometric stereo. IEEE Trans. Pattern Analysis and Machine Intelligence 30, 3 (Mar.), 548–554. Google ScholarDigital Library
    10. Furukawa, Y., and Ponce, J. 2008. Accurate camera calibration from multi-view stereo and bundle adjustment. In IEEE CVPR.Google Scholar
    11. Garg, G., Talvala, E.-V., Levoy, M., and Lensch, H. P. A. 2006. Symmetric photography: Exploiting data-sparseness in reflectance fields. In Proc. of the Eurographics Symposium on Rendering (EGSR). Google ScholarDigital Library
    12. Georghiades, A. 2003. Recovering 3-d shape and reflectance from a small number of photographs. In Proceedings of the 14th Eurographics workshop on Rendering, 230–240. Google ScholarDigital Library
    13. Ghosh, A., Achutha, S., Heidrich, W., and O’Toole, M. 2007. Brdf acquisition with basis illumination. In Proc. IEEE ICCV.Google ScholarCross Ref
    14. Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. E. 2009. Estimating specular roughness and anisotropy from second order spherical gradient illumination. Comput. Graph. Forum 28, 4, 1161–1170. Google ScholarDigital Library
    15. Goesele, M., Lensch, H., Lang, J., Fuchs, C., and Seidel, H. 2004. DISCO: acquisition of translucent objects. ACM Transactions on Graphics (Proc. ACM SIGGRAPH), 835–844. Google ScholarDigital Library
    16. Goldman, D. B., Curless, B., Hertzmann, A., and Seitz, S. M. 2005. Shape and spatially-varying BRDFs from photometric stereo. In Proc. of the International Conference on Computer Vision (ICCV). Google ScholarDigital Library
    17. Guillemaut, J.-Y., Drbohlav, O., Sara, R., and Illingworth, J. 2004. Helmholtz stereopsis on rough and strongly textured surfaces. In 3D Data Processing, Visualization and Transmission (3DPVT), 10–17. Google ScholarDigital Library
    18. Gupta, M., Tian, Y., Narasimhan, S. G., and Zhang, L. 2009. (De)Focusing on Global Light Transport for Active Scene Recovery. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition.Google Scholar
    19. Han, J. Y., and Perlin, K. 2003. Measuring bidirectional texture reflectance with a kaleidoscope. (Proc. SIGGRAPH) 22, 3, 741–748. Google ScholarDigital Library
    20. Harris, C., and Stephens, M. 1988. A combined corner and edge detector. In Alvey Vision Conference, 147–151.Google Scholar
    21. Hernández, C., Vogiatzis, G., and Cipolla, R. 2008. Multiview photometric stereo. IEEE Trans. Pattern Analysis and Machine Intelligence, 548–554. Google ScholarDigital Library
    22. Holroyd, M., Lawrence, J., Humphreys, G., and Zickler, T. 2008. A photometric approach for estimating normals and tangents. ACM Trans. on Graphics (Proc. of SIGGRAPH Asia) 27, 5. Google ScholarDigital Library
    23. Holroyd, M., Lawrence, J., and Zickler, T. 2010. A radiometric analysis of projected sinusoidal illumination for opaque surfaces. Tech. Rep. CS-2010-7, University of Virginia, May.Google Scholar
    24. Ihrke, I., Kutulakos, K. N., Lensch, H. P. A., Magnor, M., and Heidrich, W. 2008. State of the art in transparent and specular object reconstruction. In STAR Proceedings of Eurographics.Google Scholar
    25. Kazhdan, M., Bolitho, M., and Hoppe, H. 2006. Poisson surface reconstruction. In Proc. of the Eurographics Symposium on Geometry Processing. Google ScholarDigital Library
    26. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material representation and editing. ACM Trans. Graph 25, 3, 735–745. Google ScholarDigital Library
    27. Lensch, H. P. A., Heidrich, W., and Seidel, H.-P. 2001. A silhouette-based algorithm for texture registration and stitching. Graphical Models 64, 4, 245–262. Google ScholarDigital Library
    28. Lensch, H. P. A., Kautz, J., Goesele, M., and Heidrich, W. 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Transactions on Graphics 22, 2. Google ScholarDigital Library
    29. Lourakis, M., and Argyros, A. 2004. The design and implementation of a generic sparse bundle adjustment software package based on the levenberg-marquardt algorithm. Tech. rep.Google Scholar
    30. Lu, J., and Little, J. 1999. Reflectance and shape from images using a collinear light source. Int. Journal of Computer Vision 32, 3, 213–240. Google ScholarDigital Library
    31. Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. 2007. Rapid acquisition of specular and diffuse normals from polarized spherical gradient illumination. In Eurographics Symposium on Rendering. Google ScholarDigital Library
    32. Marschner, S. R. 1998. Inverse Rendering for Computer Graphics. PhD thesis, Cornell University. Google ScholarDigital Library
    33. Müller, G., Bendels, G., and Klein, R. 2005. Rapid synchronous acquisition of geometry and appearance of cultural heritage artefacts. In Proc. of VAST. Google ScholarDigital Library
    34. Nayar, S. K., Krishnan, G., Grossberg, M. D., and Raskar, R. 2006. Fast separation of direct and global components of a scene using high frequency illumination. ACM Transactions on Graphics (Proc. SIGGRAPH) 25, 3, 935–944. Google ScholarDigital Library
    35. Nicodemus, F., Richmond, J., Hsia, J., Ginsberg, I., and Limperis, T. 1977. Geometrical considerations and nomenclature for reflectance. National Bureau of Standards Monograph 160.Google Scholar
    36. Sato, Y., Wheeler, M. D., and Ikeuchi, K. 1997. Object shape and reflectance modeling from observation. In Proc. of SIGGRAPH. Google ScholarDigital Library
    37. Seitz, S., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R. 2006. A comparison and evaluation of multi-view stereo reconstruction algorithms. In Proc. of IEEE ICCV, 519–528. Google ScholarDigital Library
    38. Srinivasan, V., Liu, H. C., and Halioua, M. 1985. Automated phase-measuring profilometry: A phase mapping approach. Applied Optics 24, 185–188.Google ScholarCross Ref
    39. Strand, J., and Taxt, T. 1999. Performance evaluation of 2d phase unwrapping algorithms. Applied Optics 38, 20, 4333–4344.Google ScholarCross Ref
    40. Weyrich, T., Matusik, W., Pfister, H., Bickel, B., Donner, C., Tu, C., McAndless, J., Lee, J., Ngan, A., Jensen, H. W., and Gross, M. H. 2006. Analysis of human faces using a measurement-based skin reflectance model. ACM Trans. Graph 25, 3, 1013–1024. Google ScholarDigital Library
    41. Yu, Y., Debevec, P., Malik, J., and Hawkins, T. 1999. Inverse global illumination: Recovering reflectance models of real scenes from photographs. In Proc. of SIGGRAPH. Google ScholarDigital Library
    42. Zhang, L., and Nayar, S. K. 2006. Projection defocus analysis for scene capture and image display. ACM Trans. on Graphics (Proc. SIGGRAPH) 25, 3. Google ScholarDigital Library
    43. Zhang, L., Curless, B., and Seitz, S. M. 2003. Spacetime stereo: Shape recovery for dynamic scenes. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google Scholar
    44. Zhang, Z. 1994. Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision 13, 2, 119–152. Google ScholarDigital Library
    45. Zhang, Z. 2000. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 11. Google ScholarDigital Library
    46. Zickler, T., Belhumeur, P. N., and Kriegman, D. J. 2002. Helmholtz stereopsis: Exploiting reciprocity for surface reconstruction. International Journal of Computer Vision 49, 2–3, 215–227. Google ScholarDigital Library
    47. Zickler, T. E. 2006. Reciprocal image features for uncalibrated helmholtz stereopsis. In IEEE Computer Vision and Pattern Recognition or CVPR, II: 1801–1808. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: