“3D + 2D TV: 3D Displays With No Ghosting for Viewers Without Glasses” by Scher, Liu, Vaish, Gunawardane and Davis

  • ©Steven Scher, Jing Liu, Rajan Vaish, Prabath Gunawardane, and James E. Davis




    3D + 2D TV: 3D Displays With No Ghosting for Viewers Without Glasses

Session/Category Title: Display Hardware




    3D displays are increasingly popular in consumer and commercial applications. Many such displays show 3D images to viewers wearing special glasses, while showing an incomprehensible double image to viewers without glasses. We demonstrate a simple method that provides those with glasses a 3D experience, while viewers without glasses see a 2D image without artifacts.

    In addition to separate left and right images in each frame, we add a third image, invisible to those with glasses. In the combined view seen by those without glasses, this cancels the right image, leaving only the left. If the left and right images are of equal brightness, this approach results in low contrast for viewers without glasses. Allowing differential brightness between the left and right images improves 2D contrast. We observe experimentally that: (1) viewers without glasses prefer our 3D+2DTV to a standard 3DTV, (2) viewers with glasses maintain a strong 3D percept, even when one eye is significantly darker than the other, and (3) sequential-stereo display viewers with glasses experience a depth illusion caused by the Pulfrich effect, but it is small and innocuous. Our technique is applicable to displays using either active shutter glasses or passive glasses. Our prototype uses active shutter glasses and a polarizer.


    1. Agrawala, M., Beers, A. C., McDowall, I., Frohlich, B., Bolas, M., and Hanrahan, P. 1997. The two-user responsive workbench: Support for collaboration through individual views of a shared space. In Proceedings of the Annual ACM SIGGRAPH International Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, 327–332.
    2. Aiba, T. and Stevens, S. 1964. Relation of brightness to duration and luminance under light- and dark-adaptation. Vis. Res. 4, 78, 391–401.
    3. Aliaga, D. G., Yeung, Y. H., Law, A., Sajadi, B., and Majumder, A. 2012. Fast high-resolution appearance editing using superimposed projections. ACM Trans. Graph. 31, 2, 13:1–13:13.
    4. Beldie, I. P. and Kost, B. 1991. Luminance asymmetry in stereo TV images. Stereoscop. Displays Appl. II, 1457, 242–247.
    5. Bimber, O., Iwai, D., Wetzstein, G., and Grundhofer, A. 2008. The visual computing of projector-camera systems. In ACM SIGGRAPH Classes. ACM Press, New York, 84:1–84:25.
    6. Brown, M., Majumder, A., and Yang, R. 2005. Camera-based calibration techniques for seamless multiprojector displays. IEEE Trans. Vis. Comput. Graph. 11, 2, 193–206.
    7. Cormack, L. K., Stevenson, S. B., and Schor, C. M. 1991. Interocular correlation, luminance contrast and cyclopean processing. Vis. Res. 31, 2195–2207.
    8. Diaper, C. J. 1997. Pulfrich revisited. Surv. Ophthalmol. 41, 6, 493–499.
    9. Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., and Seidel, H.-P. 2011. A perceptual model for disparity. ACM Trans. Graph. 30, 4, 96:1–96:10.
    10. Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., and Seidel, H.-P. 2012. Apparent stereo: The cornsweet illusion can enhance perceived depth. In Proceedings of the IS&T/SPIE Symposium on Electronic Imaging Human Vision and Electronic Imaging XVII. 1–12.
    11. Dodgson, N. 2005. Autostereoscopic 3D displays. IEEE Comput. 38, 31–36.
    12. Dodwell, P., Harker, G., and Behar, I. 1968. Pulfrich effect with minimal differential adaptation of the eyes. Vis. Res. 8, 11, 1431–1443.
    13. Dvorak, V. 1872. Uber analoga der personlichen differenz zwischen beiden augen und den netzhautstellen desselben auges. Prag: Sitzber. d. k. blun. Gesellsch. d. Wiss, 6574.
    14. Gateau, S. and Neuman, R. 2010. Stereoscopy, from xy to z. In ACM Short Courses in SIGGRAPH Asia.
    15. Grossberg, M., Peri, H., Nayar, S., and Belhumeur, P. 2004. Making one object look like another: Controlling appearance using a projector-camera system. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
    16. Grundhofer, A. and Bimber, O. 2008. Real-time adaptive radiometric compensation. IEEE Trans. Vis. Comput. Graph. 14, 1, 97–108.
    17. Grundhofer, A., Seeger, M., Hantsch, F., and Bimber, O. 2007. Dynamic adaptation of projected imperceptible codes. In Proceedings of the 6th IEEE/ACM International Symposium on Mixed and Augmented Reality. 1–10.
    18. Heron, G. and Dutton, G. 1989. The Pulfrich phenomenon and its alleviation with a neutral density filter. Brit. J. Ophthalmol. 73, 12.
    19. Jorke, H. and Fritz, M. 2006. Stereo projection using interference filters. In Proceedings of the Society of Photo-Optical Instrumentation Engineers Conference.
    20. Kim, S.-C. and Kim, E.-S. 2005. A new liquid crystal display-based polarized stereoscopic projection method with improved light efficiency. Optics Comm. 249, 1–3, 51–63.
    21. Kooi, F. and Toet, A. 2004. Visual comfort of binocular and 3D displays. Displays 25, 2–3, 99–108.
    22. Matusik, W. and Pfister, H. 2004. 3DTV: A scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. ACM Trans. Graph. 23, 3, 814–824.
    23. McDowall, I. E., Bolas, M. T., Corr, D., and Schmidt, T. C. 2001. Single and multiple viewer stereo with dlp projectors. Proc. SPIE 4297.
    24. MOrgan, M. and Thompson, P. 1975. Apparent motionand the pulfrich effect. Percept. 4, 1, 3–18.
    25. Perlin, K., Paxia, S., and Kollin, J. S. 2000. An autostereoscopic display. In Proceedings of the Annual ACM SIGGRAPH International Conference on Computer Graphics and Interactive Techniques. 319–326.
    26. Pollack, J. 1968. Reaction time to different wavelengths at various luminances. Attent. Percept. Psychophys. 3, 17.
    27. Pulfrich, C. 1922. Die stereoskopie im dienste der isochromen und heterochromen photometrie. Die Naturwissenschaften 10.
    28. Ramstad, M. J. 2011. Interference filters for viewing anaglyphs. Patent WO 2011031326.
    29. Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., and Fuchs, H. 1998. The office of the future: A unified approach to image-based modeling and spatially immersive displays. In Proceedings of the Annual ACM SIGGRAPH International Conference on Computer Graphics and Interactive Techniques. 179–188.
    30. Siegel, M. and Nagata, S. 2000. Just enough reality: Comfortable 3-D viewing via microstereopsis. IEEE Trans. Circ. Syst. Video Technol. 10, 3, 387–396.
    31. Sorensen, S. E. B., Hansen, P. S., and Sorensen, N. L. 2004. Method for recording and viewing stereoscopic images in color using multichrome filters. Patent US 6687003.
    32. Standing, L., Dodwell, P., and Lang, D. 1968. Dark adaptation and the pulfrich effect. Attent. Percept. Psychophys. 4, 118–120.
    33. Stevens, J. C. and Stevens, S. S. 1963. Brightness function: Effects of adaptation. J. Opt. Soc. Amer. 53, 3, 375–385.
    34. Taub, E. A. 2002. Still thinking outside the box. New York Times (7/18/02).
    35. Vetro, B. A., Wiegand, T., and Sullivan, G. J. 2011. Overview of the stereo and multiview video coding extensions of the H.264/MPEG-4 avc standard. Proc. IEEE 99, 4, 626–642.
    36. Yang, X., Zhang, L., Wong, T., and Heng, P. 2012. Binocular tone mapping. ACM Trans. Graph. 31, 4, 93:1–93:10.

ACM Digital Library Publication:

Overview Page: