“Functionality-aware retargeting of mechanisms to 3D shapes” by Zhang

  • ©Ran Zhang

Conference:


Type(s):


Title:

    Functionality-aware retargeting of mechanisms to 3D shapes

Session/Category Title:   Dynamic Fabrication


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We present an interactive design system to create functional mechanical objects. Our computational approach allows novice users to retarget an existing mechanical template to a user-specified input shape. Our proposed representation for a mechanical template encodes a parameterized mechanism, mechanical constraints that ensure a physically valid configuration, spatial relationships of mechanical parts to the user-provided shape, and functional constraints that specify an intended functionality. We provide an intuitive interface and optimization-in-the-loop approach for finding a valid configuration of the mechanism and the shape to ensure that higher-level functional goals are met. Our algorithm interactively optimizes the mechanism while the user manipulates the placement of mechanical components and the shape. Our system allows users to efficiently explore various design choices and to synthesize customized mechanical objects that can be fabricated with rapid prototyping technologies. We demonstrate the efficacy of our approach by retargeting various mechanical templates to different shapes and fabricating the resulting functional mechanical objects.

References:


    1. Ram Anantha, Glenn A Kramer, and Richard H Crawford. 1996. Assembly modelling by geometric constraint satisfaction. Computer-Aided Design 28, 9 (1996), 707 — 722. Google ScholarCross Ref
    2. Autodesk. 2017. Maya, Computer Animation and Modeling Software. http://www.autodesk.com/products/maya/overview. (2017).Google Scholar
    3. Moritz Bächer, Stelian Coros, and Bernhard Thomaszewski. 2015. LinkEdit: Interactive Linkage Editing Using Symbolic Kinematics. ACM Trans. Graph. 34, 4, Article 99 (July 2015), 8 pages.Google ScholarDigital Library
    4. Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga Sorkine-Hornung. 2014. Spin-it: Optimizing Moment of Inertia for Spinnable Objects. ACM Trans. Graph. 33, 4, Article 96 (July 2014), 10 pages.Google ScholarDigital Library
    5. Gilbert Louis Bernstein and Wilmot Li. 2015. Lillicon: Using Transient Widgets to Create Scale Variations of Icons. ACM Trans. Graph. 34, 4, Article 144 (July 2015), 11 pages.Google ScholarDigital Library
    6. Dustin Beyer, Serafima Gurevich, Stefanie Mueller, Hsiang-Ting Chen, and Patrick Baudisch. 2015. Platener: Low-Fidelity Fabrication of 3D Objects by Substituting 3D Print with Laser-Cut Plates. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI ’15). ACM, New York, NY, USA, 1799–1806. Google ScholarDigital Library
    7. Gaurav Bharaj, Stelian Coros, Bernhard Thomaszewski, James Tompkin, Bernd Bickel, and Hanspeter Pfister. 2015. Computational Design of Walking Automata. In ACM SCA (SCA ’15). ACM, New York, NY, USA, 93–100. Google ScholarDigital Library
    8. Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee, Hanspeter Pfister, Markus Gross, and Wojciech Matusik. 2010. Design and Fabrication of Materials with Desired Deformation Behavior. ACM Trans. Graph. 29, 4, Article 63 (July 2010), 10 pages. Google ScholarDigital Library
    9. Duygu Ceylan, Wilmot Li, Niloy J. Mitra, Maneesh Agrawala, and Mark Pauly. 2013. Designing and Fabricating Mechanical Automata from Mocap Sequences. ACM Trans. Graph. 32, 6, Article 186 (Nov. 2013), 11 pages.Google ScholarDigital Library
    10. Shean-Juinn Chiou and Kota Sridhar. 1999. Automated conceptual design of mechanisms. Mechanism and machine theory 34, 3 (1999), 467–495. Google ScholarCross Ref
    11. Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira Forberg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Computational Design of Mechanical Characters. ACM Trans. Graph. 32, 4, Article 83 (July 2013), 12 pages.Google ScholarDigital Library
    12. Gilles Debunne. 2017. libQGLViewer. https://github.com/GillesDebunne/libQGLViewer/. (2017).Google Scholar
    13. Yue Dong, Jiaping Wang, Fabio Pellacini, Xin Tong, and Baining Guo. 2010. Fabricating Spatially-varying Subsurface Scattering. ACM Trans. Graph. 29, 4, Article 62 (July 2010), 10 pages. Google ScholarDigital Library
    14. Tao Du, Adriana Schulz, Bo Zhu, Bernd Bickel, and Wojciech Matusik. 2016. Computational Multicopter Design. ACM Trans. Graph. 35, 6, Article 227 (Nov. 2016), 10 pages.Google ScholarDigital Library
    15. Jérémie Dumas, Jean Hergel, and Sylvain Lefebvre. 2014. Bridging the Gap: Automated Steady Scaffoldings for 3D Printing. ACM Trans. Graph. 33, 4, Article 98 (July 2014), 10 pages.Google ScholarDigital Library
    16. M. Gleicher and A. Witkin. 1991. Differential Manipulation. In Proceedings of Graphics Interface ’91 (GI ’91). 61–67.Google Scholar
    17. M. Gleicher and A. Witkin. 1994. Drawing with Constraints. The Visual Computer 11, 1 (1994), 39–51. Google ScholarDigital Library
    18. Kirk Haller, Audrey Lee-St. John, Meera Sitharam, Ileana Streinu, and Neil White. 2009. Body-and-cad Geometric Constraint Systems. In Proceedings of the 2009 ACM Symposium on Applied Computing (SAC ’09). ACM, New York, NY, USA, 1127–1131. Google ScholarDigital Library
    19. Young-Hyun Han and Kunwoo Lee. 2006. A Case-based Framework for Reuse of Previous Design Concepts in Conceptual Synthesis of Mechanisms. Comput. Ind. 57, 4 (May 2006), 305–318. Google ScholarDigital Library
    20. Ruizhen Hu, Oliver van Kaick, Bojian Wu, Hui Huang, Ariel Shamir, and Hao Zhang. 2016. Learning How Objects Function via Co-analysis of Interactions. ACM Trans. Graph. 35, 4, Article 47 (July 2016), 13 pages.Google ScholarDigital Library
    21. Alec Jacobson, Daniele Panozzo, and others. 2017. libigl: A simple C++ geometry processing library. (2017). https://libigl.github.io/libigl/.Google Scholar
    22. Han-Jong Kim, Yunwoo Jeong, Ju-Whan Kim, and Tek-Jin Nam. 2016. M.Sketch: Prototyping Tool for Linkage-Based Mechanism Design. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (UIST ’16 Adjunct). ACM, New York, NY, USA, 75–77.Google ScholarDigital Library
    23. Marius Kintel, Clifford Wolf, and others. 2017. OpenSCAD. https://github.com/openscad/openscad/. (2017).Google Scholar
    24. Bongjin Koo, Wilmot Li, JiaXian Yao, Maneesh Agrawala, and Niloy J. Mitra. 2014. Creating Works-like Prototypes of Mechanical Objects. ACM Trans. Graph. 33, 6, Article 217 (Nov. 2014), 9 pages.Google ScholarDigital Library
    25. Yuki Koyama, Shinjiro Sueda, Emma Steinhardt, Takeo Igarashi, Ariel Shamir, and Wojciech Matusik. 2015. AutoConnect: Computational Design of 3D-printable Connectors. ACM Trans. Graph. 34, 6, Article 231 (Oct. 2015), 11 pages.Google ScholarDigital Library
    26. Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen, Yann Savoye, Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. 2014. Build-to-last: Strength to Weight 3D Printed Objects. ACM Trans. Graph. 33, 4, Article 97 (July 2014), 10 pages.Google ScholarDigital Library
    27. Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik. 2012. Chopper: Partitioning Models into 3D-printable Parts. ACM Trans. Graph. 31, 6, Article 129 (Nov. 2012), 9 pages.Google ScholarDigital Library
    28. Vittorio Megaro, Bernhard Thomaszewski, Damien Gauge, Eitan Grinspun, Stelian Coros, and Markus Gross. 2014. ChaCra: An Interactive Design System for Rapid Character Crafting. In ACM SCA (SCA ’14). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 123–130.Google Scholar
    29. Vittorio Megaro, Bernhard Thomaszewski, Maurizio Nitti, Otmar Hilliges, Markus Gross, and Stelian Coros. 2015. Interactive Design of 3D-printable Robotic Creatures. ACM Trans. Graph. 34, 6, Article 216 (Oct. 2015), 9 pages.Google ScholarDigital Library
    30. Niloy J. Mitra, Michael Wand, Hao Zhang, Daniel Cohen-Or, and Martin Bokeloh. 2013a. Structure-Aware Shape Processing. In EUROGRAPHICS State-of-the-art Report. Google ScholarDigital Library
    31. Niloy J. Mitra, Yong-Liang Yang, Dong-Ming Yan, Wilmot Li, and Maneesh Agrawala. 2013b. Illustrating How Mechanical Assemblies Work. Commun. ACM 56, 1 (Jan. 2013), 106–114. Google ScholarDigital Library
    32. Modo. 2017. MODO Creative Modeling Software. https://www.thefoundry.co.uk/products/modo/. (2017).Google Scholar
    33. Przemyslaw Musialski, Christian Hafner, Florian Rist, Michael Birsak, Michael Wimmer, and Leif Kobbelt. 2016. Non-linear Shape Optimization Using Local Subspace Projections. ACM Trans. Graph. 35, 4, Article 87 (July 2016), 13 pages.Google ScholarDigital Library
    34. Jorge Nocedal and Stephen J. Wright. 2006. Numerical optimization (2. ed.). Springer, New York, NY.Google Scholar
    35. Jesús Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A. Canabal, Robert Sumner, and Miguel A. Otaduy. 2015. Design and Fabrication of Flexible Rod Meshes. ACM Trans. Graph. 34, 4, Article 138 (July 2015), 12 pages.Google ScholarDigital Library
    36. Pixologic. 2017. Pixologic: Home of ZBrush. http://pixologic.com/. (2017).Google Scholar
    37. Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung. 2013. Make It Stand: Balancing Shapes for 3D Fabrication. ACM Trans. Graph. 32, 4, Article 81 (July 2013), 10 pages.Google ScholarDigital Library
    38. U. Roy, N. Pramanik, R. Sudarsan, R.D. Sriram, and K.W. Lyons. 2001. Function-to-form mapping: model, representation and applications in design synthesis. Computer-Aided Design 33, 10 (2001), 699 — 719. Google ScholarCross Ref
    39. Adriana Schulz, Ariel Shamir, David I. W. Levin, Pitchaya Sitthi-amorn, and Wojciech Matusik. 2014. Design and Fabrication by Example. ACM Trans. Graph. 33, 4, Article 62 (July 2014), 11 pages.Google ScholarDigital Library
    40. Kaleem Siddiqi, Juan Zhang, Diego Macrini, Ali Shokoufandeh, Sylvain Bouix, and Sven Dickinson. 2008. Retrieving Articulated 3-D Models Using Medial Surfaces. Mach. Vision Appl. 19, 4 (May 2008), 261–275. Google ScholarDigital Library
    41. Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel, Eitan Grinspun, and Markus Gross. 2014. Designing Inflatable Structures. ACM Trans. Graph. 33, 4, Article 63 (July 2014), 10 pages.Google ScholarDigital Library
    42. Peng Song, Zhongqi Fu, Ligang Liu, and Chi-Wing Fu. 2015a. Printing 3D objects with interlocking parts. Computer Aided Geometric Design 35–36 (2015), 137 — 148. Geometric Modeling and Processing 2015.Google Scholar
    43. S. Song, J. Kim, and K. Yamane. 2015b. Development of a bipedal robot that walks like an animation character. In IEEE ICRA. 3596–3602. Google ScholarCross Ref
    44. Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomír Mech. 2012. Stress Relief: Improving Structural Strength of 3D Printable Objects. ACM Trans. Graph. 31, 4, Article 48 (July 2012), 11 pages.Google ScholarDigital Library
    45. Timothy Sun and Changxi Zheng. 2015. Computational Design of Twisty Joints and Puzzles. ACM Trans. Graph. 34, 4, Article 101 (July 2015), 11 pages.Google ScholarDigital Library
    46. Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan Grinspun, and Markus Gross. 2014. Computational Design of Linkage-based Characters. ACM Trans. Graph. 33, 4, Article 64 (July 2014), 9 pages.Google ScholarDigital Library
    47. Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra. 2012. Guided Exploration of Physically Valid Shapes for Furniture Design. ACM Trans. Graph. 31, 4, Article 86 (July 2012), 11 pages.Google ScholarDigital Library
    48. Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi. 2014. Pteromys: Interactive Design and Optimization of Free-formed Free-flight Model Airplanes. ACM Trans. Graph. 33, 4, Article 65 (July 2014), 10 pages.Google ScholarDigital Library
    49. Francisca Gil Ureta, Chelsea Tymms, and Denis Zorin. 2016. Interactive Modeling of Mechanical Objects. Computer Graphics Forum (2016).Google Scholar
    50. Patrick Wieschollek. 2017. CppOptimizationLibrary. https://github.com/PatWie/CppNumericalSolvers/. (2017).Google Scholar
    51. Yue Xie, Weiwei Xu, Yin Yang, Xiaohu Guo, and Kun Zhou. 2015. Agile structural analysis for fabrication-aware shape editing. Computer Aided Geometric Design 35–36 (2015), 163–179. Geometric Modeling and Processing 2015.Google Scholar
    52. Kai Xu, Vladimir G. Kim, Qixing Huang, Niloy Mitra, and Evangelos Kalogerakis. 2016a. Data-driven Shape Analysis and Processing. In SIGGRAPH ASIA 2016 Courses (SA ’16). ACM, New York, NY, USA, Article 4, 38 pages. Google ScholarDigital Library
    53. Mingliang Xu, Mingyuan Li, Weiwei Xu, Zhigang Deng, Yin Yang, and Kun Zhou. 2016b. Interactive Mechanism Modeling from Multi-view Images. ACM Trans. Graph. 35, 6, Article 236 (Nov. 2016), 13 pages.Google ScholarDigital Library
    54. Ran Zhang, Shiwei Wang, Xuejin Chen, Chao Ding, Luo Jiang, Jie Zhou, and Ligang Liu. 2016. Designing Planar Deployable Objects via Scissor Structures. IEEE Transactions on Visualization and Computer Graphics 22, 2 (Feb. 2016), 1051–1062. Google ScholarDigital Library
    55. Haiming Zhao, Chengkuan Hong, Juncong Lin, Xiaogang Jin, and Weiwei Xu. 2016. Make It Swing. Comput. Aided Geom. Des. 43, C (March 2016), 226–236. Google ScholarDigital Library
    56. Changxi Zheng, Timothy Sun, and Xiang Chen. 2016. Deployable 3D Linkages with Collision Avoidance. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’16). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 179–188.Google ScholarDigital Library
    57. Qingnan Zhou, Julian Panetta, and Denis Zorin. 2013. Worst-case Structural Analysis. ACM Trans. Graph. 32, 4, Article 137 (July 2013), 12 pages.Google ScholarDigital Library
    58. Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu, Guoping Wang, and Baining Guo. 2012. Motion-guided Mechanical Toy Modeling. ACM Trans. Graph. 31, 6, Article 127 (Nov. 2012), 10 pages.Google ScholarDigital Library
    59. H. Zimmer and L. Kobbelt. 2014. Zometool Rationalization of Freeform Surfaces. IEEE Transactions on Visualization and Computer Graphics 20, 10 (Oct 2014), 1461–1473. Google ScholarCross Ref


ACM Digital Library Publication:



Overview Page: