“Wrinkled flames and cellular patterns” by Hong, Shindar and Fedkiw
Conference:
Type(s):
Title:
- Wrinkled flames and cellular patterns
Presenter(s)/Author(s):
Abstract:
We model flames and fire using the Navier-Stokes equations combined with the level set method and jump conditions to model the reaction front. Previous works modeled the flame using a combination of propagation in the normal direction and a curvature term which leads to a level set equation that is parabolic in nature and thus overly dissipative and smooth. Asymptotic theory shows that one can obtain more interesting velocities and fully hyperbolic (as opposed to parabolic) equations for the level set evolution. In particular, researchers in the field of detonation shock dynamics (DSD) have derived a set of equations which exhibit characteristic cellular patterns. We show how to make use of the DSD framework in the context of computer graphics simulations of flames and fire to obtain interesting features such as flame wrinkling and cellular patterns.
References:
1. Adabala, N., and Hughes, C. E. 2004. A parametric model for real-time flickering fire. In Proc. of Comput. Anim. and Social Agents (CASA).Google Scholar
2. Aslam, T., Bdzil, J., and Stewart, D. S. 1996. Level set methods applied to modeling detonation shock dynamics. J. Comput. Phys. 126, 390–409. Google ScholarDigital Library
3. Aslam, T. D. 1996. Investigations on detonation shock dynamics. PhD thesis, University of Illinois at Urbana-Champaign.Google Scholar
4. Beaudoin, P., Paquet, S., and Poulin, P. 2001. Realistic and Controllable Fire Simulation. In Proc. of Graph. Interface 2001, 159–166. Google ScholarDigital Library
5. Bin Zafar, N., Falt, H., Ali, M. Z., and Fong, C. 2004. Dd::fluid::solver::solverfire. In SIGGRAPH 2004 Sketches & Applications, ACM Press. Google ScholarDigital Library
6. Bukowski, R., and Sequin, C. 1997. Interactive Simulation of Fire in Virtual Building Environments. In Proc. of SIGGRAPH 1997, ACM Press / ACM SIGGRAPH, Comput. Graph. Proc., Annual Conf. Series, ACM, 35–44. Google ScholarDigital Library
7. Chiba, N., Muraoka, K., Takahashi, H., and Miura, M. 1994. Two dimensional Visual Simulation of Flames, Smoke and the Spread of Fire. J. Vis. and Comput. Anim. 5, 37–53.Google ScholarCross Ref
8. Dervieux, A., and Thomasset, F. 1979. A finite element method for the simulation of a Rayleigh-Taylor instability. Lecture Notes in Math. 771, 145–158.Google ScholarCross Ref
9. Dervieux, A., and Thomasset, F. 1981. Multifluid incompressible flows by a finite element method. Lecture Notes in Phys. 141, 158–163.Google ScholarCross Ref
10. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 736–744. Google ScholarDigital Library
11. Fedkiw, R., Stam, J., and Jensen, H. 2001. Visual simulation of smoke. In Proc. of ACM SIGGRAPH 2001, 15–22. Google ScholarDigital Library
12. Feldman, B. E., O’Brien, J. F., and Arikan, O. 2003. Animating suspended particle explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 708–715. Google ScholarDigital Library
13. Geiger, W., Rasmussen, N., Hoon, S., and Fedkiw, R. 2003. Big bangs. In SIGGRAPH 2003 Sketches & Applications, ACM Press.Google Scholar
14. Geiger, W., Rasmussen, N., Hoon, S., and Fedkiw, R. 2005. Space battle pyromania. In SIGGRAPH 2005 Sketches & Applications, ACM Press. Google ScholarDigital Library
15. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 915–920. Google ScholarDigital Library
16. Inakage, M. 1989. A Simple Model of Flames. In Proc. of Comput. Graph. Int. 89, Springer-Verlag, 71–81. Google ScholarDigital Library
17. Kim, B.-M., Liu, Y., Llamas, I., and Rossignac, J. 2006. Advections with significantly reduced dissipation and diffusion. IEEE Trans. on Vis. and Comput. Graph. In Press. Google ScholarDigital Library
18. Lamorlette, A., and Foster, N. 2002. Structural modeling of flames for a production environment. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 729–735. Google ScholarDigital Library
19. Losasso, F., Irving, G., Guendelman, E., and Fedkiw, R. 2006. Melting and burning solids into liquids and gases. IEEE Trans. on Vis. and Comput. Graph. 12, 3, 343–352. Google ScholarDigital Library
20. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. (SIGGRAPH Proc.) 25, 3, 812–819. Google ScholarDigital Library
21. Markstein, G. 1964. Nonsteady Flame Propagation. Pergamon Press.Google Scholar
22. Mazarak, O., Martins, C., and Amanatides, J. 1999. Animating exploding objects. In Proc. of Graph. Interface 1999, 211–218. Google ScholarDigital Library
23. Melek, Z., and Keyser, J. 2002. Interactive simulation of fire. In Pacific Graph., 431–432. Google ScholarDigital Library
24. Melek, Z., and Keyser, J. 2003. Interactive simulation of burning objects. In Pacific Graph., 462–466. Google ScholarDigital Library
25. Melek, Z., and Keyser, J. 2005. Multi-representation interaction for physically based modeling. In ACM Symp. on Solid and Physical Modeling, 187–196. Google ScholarDigital Library
26. Melek, Z., and Keyser, J. 2006. Bending burning matches and crumpling burning paper. In Poster, SIGGRAPH Proc., ACM. Google ScholarDigital Library
27. Musgrave, F. K. 1997. Great Balls of Fire. In SIGGRAPH 97 Animation Sketches, Visual Proceedings, 259–268.Google Scholar
28. Neff, M., and Fiume, E. 1999. A visual model for blast waves and fracture. In Proc. of Graph. Interface 1999, 193–202. Google ScholarDigital Library
29. Nguyen, D., Fedkiw, R., and Kang, M. 2001. A boundary condition capturing method for incompressible flame discontinuities. J. Comput. Phys. 172, 71–98. Google ScholarDigital Library
30. Nguyen, D., Fedkiw, R., and Jensen, H. 2002. Physically based modeling and animation of fire. ACM Trans. Graph. (SIGGRAPH Proc.) 29, 721–728. Google ScholarDigital Library
31. O’brien, J., and Hodgins, J. 1999. Graphical modeling and animation of brittle fracture. In Proc. of SIGGRAPH 1999, 137–146. Google ScholarDigital Library
32. Osher, S., and Sethian, J. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49. Google ScholarDigital Library
33. Pegoraro, V., and Parker, S. G. 2006. Physically-based realistic fire rendering. In Eurographics Workshop on Natural Phenomena (2006), E. Galin and N. Chiba, Eds., 237–244. Google ScholarCross Ref
34. Perry, C., and Pigaro, R. 1994. Synthesizing Flames and their Spread. SIGGRAPH 94 Technical Sketches Notes (July).Google Scholar
35. Rasmussen, N., Nguyen, D., Geiger, W., and Fedkiw, R. 2003. Smoke simulation for large scale phenomena. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 703–707. Google ScholarDigital Library
36. Rushmeier, H. E., Hamins, A., and Choi, M. 1995. Volume Rendering of Pool Fire Data. IEEE Comput. Graph, and Appl. 15, 4, 62–67. Google ScholarDigital Library
37. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 910–914. Google ScholarDigital Library
38. Selle, A., Fedkiw, R., Kim, B.-M., Liu, Y., and Rossignac, J. 2007. An unconditionally stable maccormack method. J. Set. Comput. in review. http://graphics.stanford.edu/~fedkiw/. Google ScholarDigital Library
39. Stam, J., and Fiume, E. 1995. Depicting Fire and Other Gaseous Phenomena Using Diffusion Process. In Proc. of SIGGRAPH 1995, 129–136. Google ScholarDigital Library
40. Stam, J. 1999. Stable fluids. In Proc. of SIGGRAPH 99, 121–128. Google ScholarDigital Library
41. Yao, J., and Stewart, D. S. 1996. On the dynamics of multidimensional detonation. J. Fluid Mech. 309, 225–275.Google ScholarCross Ref
42. Yngve, G. D., O’brien, J. F., and Hodgins, J. K. 2000. Animating explosions. In Proc. of ACM SIGGRAPH 2000, 29–36. Google ScholarDigital Library
43. Zhao, Y, Wei, X., Fan, Z., Kaufman, A., and Qin, H. 2003. Voxels on fire. In Proc. of IEEE Vis., 271–278. Google ScholarCross Ref