“Water wave packets” by Wojtan and Jeschke

  • ©Chris Wojtan and Stefan Jeschke




    Water wave packets

Session/Category Title: Fluids II




    This paper presents a method for simulating water surface waves as a displacement field on a 2D domain. Our method relies on Lagrangian particles that carry packets of water wave energy; each packet carries information about an entire group of wave trains, as opposed to only a single wave crest. Our approach is unconditionally stable and can simulate high resolution geometric details. This approach also presents a straightforward interface for artistic control, because it is essentially a particle system with intuitive parameters like wavelength and amplitude. Our implementation parallelizes well and runs in real time for moderately challenging scenarios.


    1. George Biddell Airy. 1841. Tides and waves. London.Google Scholar
    2. GD Birkhoff. 1927. THE FOUNDATION OF QUANTUM MECHANICS. Bull. Amer. Math. Soc. (1927).Google Scholar
    3. J Ernest Breeding. 1978. Velocities and refraction laws of wave groups: A verification. Journal of Geophysical Research: Oceans 83, C6 (1978), 2970–2976. Google ScholarCross Ref
    4. José A. Canabal, David Miraut, Nils Thuerey, Theodore Kim, Javier Portilla, and Miguel A. Otaduy. 2016. Dispersion Kernels for Water Wave Simulation. ACM Trans. Graph. 35, 6, Article 202 (Nov. 2016), 10 pages. Google ScholarDigital Library
    5. Nuttapong Chentanez and Matthias Müller. 2010. Real-time simulation of large bodies of water with small scale details. In Proc. ACM SIGGRAPH/Eurographics Symp. on Comp. Anim. 197–206.Google Scholar
    6. Hilko Cords. 2008. Moving with the flow: Wave particles in flowing liquids. In Winter School of Computer Graphics (WSCG).Google Scholar
    7. Fang Da, David Hahn, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2016. Surface-only liquids. ACM Transactions on Graphics (TOG) 35, 4 (2016), 78.Google ScholarDigital Library
    8. Emmanuelle Darles, Benoît Crespin, Djamchid Ghazanfarpour, and Jean-Christophe Gonzato. 2011. A survey of ocean simulation and rendering techniques in computer graphics. In Comput. Graph. Forum, Vol. 30. 43–60. Google ScholarCross Ref
    9. Robert George Dean and Robert A Dalrymple. 1991. Water wave mechanics for engineers and scientists. World Scientific.Google Scholar
    10. R Dorrestein. 1951. General linearized theory of the effect of surface films on water ripples. Nederl. Akad. Van Wetenschapen B 54 (1951), 250–272.Google Scholar
    11. Alain Fournier and William T Reeves. 1986. A simple model of ocean waves. In Computer Graphics, Vol. 20. ACM, 75–84.Google ScholarDigital Library
    12. Manuel N Gamito and F Kenton Musgrave. 2002. An accurate model of wave refraction over shallow water. Computers & Graphics 26, 2 (2002), 291–307.Google ScholarCross Ref
    13. Carlos Gonzalez-Ochoa. 2016. Advances in Real-Time Rendering in Games: Rendering Rapids in Uncharted 4. ACM SIGGRAPH Courses (2016).Google Scholar
    14. Jean-Christophe Gonzato and Bertrand Le Saëc. 1997. A phenomenological model of coastal scenes based on physical considerations. In Computer Animation and Simulation ’97. 137–148.Google ScholarCross Ref
    15. Damien Hinsinger, Fabrice Neyret, and Marie-Paule Cani. 2002. Interactive animation of ocean waves. In Proc. ACM SIGGRAPH/Eurographics Symp. on Comput. Anim. 161–166. Google ScholarDigital Library
    16. Christopher J Horvath. 2015. Empirical directional wave spectra for computer graphics. In Proceedings of the 2015 Symposium on Digital Production. ACM, 29–39.Google ScholarDigital Library
    17. Stefan Jeschke and Chris Wojtan. 2015. Water Wave Animation via Wavefront Parameter Interpolation. ACM Trans. Graph. 34, 3, Article 27 (May 2015), 14 pages. Google ScholarDigital Library
    18. R.S. Johnson. 1997. A modern introduction to the mathematical theory of water waves. Vol. 19. Cambridge university press. Google ScholarCross Ref
    19. M. Kass and G. Miller. 1990. Rapid, stable fluid dynamics for computer graphics. In Computer Graphics, Vol. 24. 49–57. Google ScholarDigital Library
    20. Todd Keeler and Robert Bridson. 2014. Ocean Waves Animation using Boundary Integral Equations and Explicit Mesh Tracking. In Proceedings of the 13th ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’14). Eurographics.Google ScholarDigital Library
    21. Theodore Kim, Jerry Tessendorf, and Nils Thuerey. 2013. Closest Point Turbulence for Liquid Surfaces. ACM Trans. Graph. 32, 2, Article 15 (April 2013), 13 pages. Google ScholarDigital Library
    22. Bernard Le Méhauté. 1988. Gravity-capillary rings generated by water drops. Journal of Fluid Mechanics 197 (1988), 415–427. Google ScholarCross Ref
    23. Bertram R Levy and Joseph B Keller. 1959. Diffraction by a smooth object. Comm. Pure and Appl. Math. 12, 1 (1959), 159–209. Google ScholarCross Ref
    24. Richard L Liboff. 2003. Introductory quantum mechanics. Addison-Wesley.Google Scholar
    25. Gary A Mastin, Peter A Watterberg, and John F Mareda. 1987. Fourier synthesis of ocean scenes. Computer Graphics and Applications, IEEE 7, 3 (1987), 16–23.Google Scholar
    26. Olivier Mercier, Cynthia Beauchemin, Nils Thuerey, Theodore Kim, and Derek Nowrouzezahrai. 2015. Surface turbulence for particle-based liquid simulations. ACM Transactions on Graphics (TOG) 34, 6 (2015), 202.Google ScholarDigital Library
    27. M.B. Nielsen and R. Bridson. 2011. Guide shapes for high resolution naturalistic liquid simulation. In ACM Trans. Graph., Vol. 30. ACM, 83. Google ScholarDigital Library
    28. Michael B Nielsen, Andreas Söderström, and Robert Bridson. 2013. Synthesizing waves from animated height fields. ACM Trans. Graph. 32, 1 (2013), 2. Google ScholarDigital Library
    29. James F O’Brien and Jessica K Hodgins. 1995. Dynamic simulation of splashing fluids. In Proc. Comp. Anim. ’95. IEEE, 198–205.Google ScholarDigital Library
    30. Juan C Padrino and Daniel D Joseph. 2007. Correction of Lamb’s dissipation calculation for the effects of viscosity on capillary-gravity waves. Physics of Fluids 19 (2007), 082105. Google ScholarCross Ref
    31. Darwyn R Peachey. 1986. Modeling waves and surf. In Computer Graphics, Vol. 20. ACM, 65–74.Google ScholarDigital Library
    32. Joseph Pedlosky 2013. Waves in the ocean and atmosphere: introduction to wave dynamics. Springer Science & Business Media.Google Scholar
    33. T Phillips. 2005. The mathematical uncertainty principle. Monthly Essays on Mathematical Topics (2005).Google Scholar
    34. Bruce Schachter. 1980. Long crested wave models. Computer Graphics and Image Processing 12, 2 (1980), 187–201. Google ScholarCross Ref
    35. SideFX. 2013. Houdini 13.0 Wave Layer Tank. (December 2013). http://www.sidefx.com/docs/houdini13.0/shelf/wavelayertank.Google Scholar
    36. JL Synge. 1962. Water waves and hydrons. Science 138, 3536 (1962), 13–15. Google ScholarCross Ref
    37. Jerry Tessendorf. 2004a. Interactive water surfaces. Game Programming Gems 4 (2004), 265–274.Google Scholar
    38. Jerry Tessendorf. 2004b. Simulating ocean water. ACM SIGGRAPH Courses (2004).Google Scholar
    39. Jerry Tessendorf. 2014. eWave: Using an Exponential Solver on the iWave Problem.. Technical Note.Google Scholar
    40. William “Lord Kelvin” Thomson. 1891. Popular lectures and addresses. Vol. 3. Macmillan London. 481–8 pages.Google Scholar
    41. Nils Thuerey, Matthias Muller-Fischer, Simon Schirm, and Markus Gross. 2007a. Real-time breaking waves for shallow water simulations. In Proc. Pacific Graphics. IEEE, 39–46. Google ScholarDigital Library
    42. Nils Thuerey, F. Sadlo, S. Schirm, Matthias Müller-Fischer, and Markus Gross. 2007b. Real-time Simulations of Bubbles and Foam Within a Shallow Water Framework. In Proc. ACM SIGGRAPH/Eurographics Symp. on Comp. Anim. 191–198. http://dl.acm.org/citation.cfm?id=1272690.1272716Google Scholar
    43. N. Thuerey, C. Wojtan, M. Gross, and G. Turk. 2010. A multiscale approach to mesh-based surface tension flows. ACM Trans. Graph. 29, 4 (2010), 48. Google ScholarDigital Library
    44. Pauline Y Ts’o and Brian A Barsky. 1987. Modeling and rendering waves: wave-tracing using beta-splines and reflective and refractive texture mapping. Computer Graphics 6, 3 (1987), 191–214.Google ScholarDigital Library
    45. Guy Vandegrift. 2004. The diffraction and spreading of a wavepacket. American Journal of Physics 72, 3 (2004), 404–407. Google ScholarCross Ref
    46. Gerald Beresford Whitham. 2011. Linear and nonlinear waves. Vol. 42. John Wiley & Sons.Google Scholar
    47. Turner Whitted. 1980. An Improved Illumination Model for Shaded Display. Commun. ACM 23, 6 (June 1980), 343–349. Google ScholarDigital Library
    48. Sheng Yang, Xiaowei He, Huamin Wang, Sheng Li, Guoping Wang, Enhua Wu, and Kun Zhou. 2016. Enriching SPH simulation by approximate capillary waves. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 29–36.Google ScholarDigital Library
    49. Jihun Yu, Chris Wojtan, Greg Turk, and Chee Yap. 2012. Explicit Mesh Surfaces for Particle Based Fluids. EUROGRAPHICS 2012 30 (2012), 41–48. Google ScholarDigital Library
    50. Cem Yuksel. 2010. Real-time water waves with wave particles. Ph.D. Dissertation. Citeseer.Google Scholar
    51. Cem Yuksel, Donald H House, and John Keyser. 2007. Wave particles. ACM Trans. Graph. 26, 3 (2007), 99. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: