“Volumetric reconstruction and interactive rendering of trees from photographs” by Reche-Martinez, Martin and Drettakis

  • ©Alex Reche-Martinez, Ignacio Martin, and George Drettakis




    Volumetric reconstruction and interactive rendering of trees from photographs



    Reconstructing and rendering trees is a challenging problem due to the geometric complexity involved, and the inherent difficulties of capture. In this paper we propose a volumetric approach to capture and render trees with relatively sparse foliage. Photographs of such trees typically have single pixels containing the blended projection of numerous leaves/branches and background. We show how we estimate opacity values on a recursive grid, based on alphamattes extracted from a small number of calibrated photographs of a tree. This data structure is then used to render billboards attached to the centers of the grid cells. Each billboard is assigned a set of view-dependent textures corresponding to each input view. These textures are generated by approximating coverage masks based on opacity and depth from the camera. Rendering is performed using a view-dependent texturing algorithm. The resulting volumetric tree structure has low polygon count, permitting interactive rendering of realistic 3D trees. We illustrate the implementation of our system on several different real trees, and show that we can insert the resulting model in virtual scenes.


    1. ANDERSEN, A., AND KAK, A. 1984. Simultaneous algebraic reconstruction technique (SART): A superior implementation of the art algorithm. Ultrasonic Imaging 6, 81.Google ScholarCross Ref
    2. BLINN, J. F. 1982. Light reflection functions for simulation of clouds and dusty surfaces. Proc. SIGGRAPH’82, 21–29. Google ScholarDigital Library
    3. BONET, J. S. D., AND VIOLA, P. A. 1999. Roxels: Responsibility weighted 3D volume reconstruction. In Proc. ICCV-99, 418–425.Google ScholarCross Ref
    4. BUEHLER, C., BOSSE, M., MCMILLAN, L., GOTLER, S. J., AND COHEN, M. F. 2001. Unstructured lumigraph rendering. In Proc. SIGGRAPH 2001, 425–432. Google ScholarDigital Library
    5. CHAMBERLAIN, B., DEROSE, T., LISCHINSKI, D., SALESIN, D., AND SNYDER, J. 1996. Faster rendering of complex environments using a spatial hierarchy. In Proc. Graphics Interface’96. Google ScholarDigital Library
    6. CHUANG, Y.-Y., CURLESS, B., SALESIN, D. H., AND SZELISKI, R. 2001. A Bayesian approach to digital matting. In Proc. of IEEE CVPR 2001, vol. 2, 264–271.Google Scholar
    7. DE REFFYE, P., EDELIN, C., FRANSON, J., JAEGER, M., AND PUECH, C. 1988. Plant models faithful to botanical structure and development. In Proc. SIGGRAPH 88, 151–158. Google ScholarDigital Library
    8. DEBEVEC, P. E., TAYLOR, C. J., AND MALIK, J. 1996. Modeling and rendering architecture from photographs: A hybrid geometry- and image-based approach. Proc. SIGGRAPH’96, 11–20. Google ScholarDigital Library
    9. DEUSSEN, O., HANRAHAN, P., LINTERMANN, B., MÊCH, R., PHARR, M., AND PRUSINKIEWICZ, P. 1998. Realistic modeling and rendering of plant ecosystems. Proc. SIGGRAPH’98, 275–286. Google ScholarDigital Library
    10. DEUSSEN, O., COLDITZ, C., STAMMINGER, M., AND DRETTAKIS, G. 2002. Interactive visualization of complex plant ecosystems. In Proc. IEEE Visualization 2002. Google ScholarDigital Library
    11. DREBIN, R. A., CARPENTER, L., AND HANRAHAN, P. 1988. Volume rendering. In Proc. SIGGRAPH’88, 65–74. Google ScholarDigital Library
    12. EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis by non-parametric sampling. In Proc. IEEE ICCV 1999, 1033–1038. Google ScholarDigital Library
    13. FAUGERAS, O. D. 1993. Three-Dimensional Computer Vision: A Geometric Viewpoint. The MIT Press, Cambridge, Mass. Google ScholarDigital Library
    14. KATSUMI, T., KAZUFUMI, K., EIHACHIRO, N., FUJIWA, K., AND TAKAO, N. 1992. A display method of trees by using photo images. Journal of Information Processing 15, 4.Google Scholar
    15. KUTULAKOS, K., AND SEITZ, S. 1999. A theory of shape by space carving. In Proc. ICCV-99, vol. I, 307–314.Google ScholarCross Ref
    16. LEVOY, M. 1988. Display of surfaces from volume data. IEEE Computer Graphics and Applications 8, 3 (May), 29–37. Google ScholarDigital Library
    17. MATUSIK, W., PFISTER, H., NGAN, A., BEARDSLEY, P., ZIEGLER, R., AND MCMILLAN, L. 2002. Image-based 3D photography using opacity hulls. ACM Trans. on Graphics (proc. SIGGRAPH 2002) 21, 3 (July), 427–437. Google ScholarDigital Library
    18. MAX, N., AND OHSAKI, K. 1995. Rendering trees from precomputed Z-buffer views. In Proc. 6th EG Workshop on Rendering.Google ScholarCross Ref
    19. MAX, N. 1995. Optical models for direct volume rendering. IEEE Transactions on Visualization and Computer Graphics 1, 2 (June), 99–108. Google ScholarDigital Library
    20. MAX, N. 1996. Hierarchical rendering of trees from precomputed multi-layer z-buffers. In Proc. 7th EG Workshop on Rendering. Google ScholarDigital Library
    21. MEYER, A., AND NEYRET, F. 1998. Interactive volumetric textures. In Proc. 9th EG Rendering Workshop 1998.Google ScholarCross Ref
    22. MEYER, A., NEYRET, F., AND POULIN, P. 2001. Interactive rendering of trees with shading and shadows. In Proc. 12th EG Workshop on Rendering, 2001. Google ScholarDigital Library
    23. NEYRET, F. 1998. Modeling animating and rendering complex scenes using volumetric textures. IEEE Trans. on Visualization and Computer Graphics 4, 1 (Jan.-Mar.), 55–70. Google ScholarDigital Library
    24. PORTER, T., AND DUFF, T. 1984. Compositing digital images. In Proc. of SIGGRAPH’84, 253–259. Google ScholarDigital Library
    25. PRUSINKIEWICZ, P., AND LINDENMAYER, A. 1990. The algorithmic beauty of plants. Springer, New York. Google ScholarDigital Library
    26. QIN, X., NAKAMAE, E., TADAMURA, K., AND NAGAI, Y. 2003. Fast photo-realistic rendering of trees in daylight. In Proc. of Eurographics 03, 243–252.Google Scholar
    27. RUZON, M., AND TOMASI, C. 2000. Alpha estimation in natural images. In Proc. IEEE CVPR’2000, 18–25.Google ScholarCross Ref
    28. SEITZ, S., AND DYER, C. 1997. Photorealistic scene reconstruction by voxel coloring. In Proc. IEEE CVPR 1997, 1067–1073. Google ScholarDigital Library
    29. SHIRLEY, P., AND TUCHMAN, A. 1990. A polygonal approximation to direct scalar volume rendering. Computer Graphics 24, 5 (Nov.), 63–70. Google ScholarDigital Library
    30. SHLYAKHTER, I., ROZENOER, M., DORSEY, J., AND TELLER, S. 2001. Reconstructing 3D tree models from instrumented photographs. IEEE Computer Graphics and Applications 21, 3 (May/June), 53–61. Google ScholarDigital Library
    31. SZELISKI, R., AND GOLLAND, P. 1998. Stereo matching with transparency and matting. In Proc. ICCV-98, 517–526. Google ScholarDigital Library
    32. WESTOVER, L. 1990. Footprint evaluation for volume rendering. Proc. SIGGRAPH’90, 367–376. Google ScholarDigital Library
    33. WOOD, D. N., AZUMA, D. I., ALDINGER, K., CURLESS, B., DUCHAMP, T., SALESIN, D. H., AND STUETZLE, W. 2000. Surface light fields for 3D photography. In Proc. SIGGRAPH 2000, 287–296. Google ScholarDigital Library
    34. YAMAZAKI, S., SAGAWA, R., KAWASAKI, H., IKEUCHI, K., AND SAKAUCHI, M. 2002. Microfacet billboarding. In Proc. 13th EG Workshop on Rendering. Google ScholarDigital Library

ACM Digital Library Publication: