“Volume-encoded UV-maps”

  • ©Marco Tarini




    Volume-encoded UV-maps

Session/Category Title: MAPPINGS




    UV-maps are required in order to apply a 2D texture over a 3D model. Conventional UV-maps are defined by an assignment of uv positions to mesh vertices. We present an alternative representation, volume-encoded UV-maps, in which each point on the surface is mapped to a uv position which is solely a function of its 3D position. This function is tailored for a target surface: its restriction to the surface is a parametrization exhibiting high quality, e.g. in terms of angle and area preservation; and, near the surface, it is almost constant for small orthogonal displacements. The representation is applicable to a wide range of shapes and UV-maps, and unlocks several key advantages: it removes the need to duplicate vertices in the mesh to encode cuts in the map; it makes the UV-map representation independent from the meshing of the surface; the same texture, and even the same UV-map, can be shared by multiple geometrically similar models (e.g. all levels of a LoD pyramid); UV-maps can be applied to representations other than polygonal meshes, like point clouds or set of registered range-maps. Our schema is cheap on GPU computational and memory resources, requiring only a single, cache-coherent indirection to a small volumetric texture per fragment. We also provide an algorithm to construct a volume-encoded UV-map given a target surface.


    1. Benson, D., and Davis, J. 2002. Octree textures. ACM Trans. Graph. 21, 3, 785–790. Google ScholarDigital Library
    2. Burley, B., and Lacewell, D. 2008. Ptex: Per-face texture mapping for production rendering. In Eurographics Symp. on Rendering, EGSR’08, 1155–1164. Google ScholarDigital Library
    3. Christensen, P. H., and Batali, D. 2004. An irradiance atlas for global illumination in complex production scenes. In Proc. of EG Conf. on Rendering Techniques, EGSR’04, 133–141. Google ScholarDigital Library
    4. Chuang, M., Luo, L., Brown, B. J., Rusinkiewicz, S., and Kazhdan, M. 2009. Estimating the Laplace-Beltrami operator by restricting 3D functions. Symp. on Geom. Proc., 1475–1484. Google ScholarDigital Library
    5. Cignoni, P., Ranzuglia, G., Callieri, M., Corsini, M., Ganovelli, F., Pietroni, N., and Tarini, M., 2011. Mesh-lab. http://www.meshlab.org/.Google Scholar
    6. Dachsbacher, C., and Lefebvre, S. 2008. Efficient and Practical TileTrees (in Shader X6). Shader X6. Charles River Media.Google Scholar
    7. Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic parameterizations of surface meshes. Comput. Graph. Forum 21, 3, 209–218.Google ScholarCross Ref
    8. Ford, L., and Fulkerson, D. 1962. Flows in networks. Princeton U. Press.Google Scholar
    9. Garćia, I., Lefebvre, S., Hornus, S., and Lasram, A. 2011. Coherent parallel hashing. ACM Trans. Graph. 30, 6. Google ScholarDigital Library
    10. Gu, X., Gortler, S. J., and Hoppe, H. 2002. Geometry images. ACM Trans. Graph. 21 (3) (21/07/2002), 355–361. Google ScholarDigital Library
    11. He, Y., Wang, H., Fu, C., and Qin, H. 2009. A divide-and-conquer approach for automatic polycube map construction. Computers & Graphics 33, 3, 369–380. Google ScholarDigital Library
    12. Hormann, K., Lévy, B., and Sheffer, A. 2007. Mesh parameterization: Theory and practice. SIGGRAPH Course Notes. Google ScholarDigital Library
    13. Jakob, W., Tarini, M., Panozzo, D., and Sorkine-Hornung, O. 2015. Instant field-aligned meshes. ACM Trans. Graph. 34, 6. Google ScholarDigital Library
    14. Lefebvre, S., and Dachsbacher, C. 2007. Tiletrees. In Proc. of the Symp. on Interact. 3D Graph. and Games, ACM, 25–31. Google ScholarDigital Library
    15. Lefebvre, S., and Hoppe, H. 2006. Perfect spatial hashing. In ACM Trans. Graph., vol. 25, ACM, 579–588. Google ScholarDigital Library
    16. Lefebvre, S., Hornus, S., Neyret, F., et al. 2005. Octree textures on the gpu. GPU gems 2, 595–613.Google Scholar
    17. Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 3, 362–371. Google ScholarDigital Library
    18. Mitra, N. J., Nguyen, A., and Guibas, L. 2004. Estimating surface normals in noisy point cloud data. In spec. issue of Inter. Jour. of Comp. Geom. and Appl., vol. 14, 261–276.Google ScholarCross Ref
    19. Panetta, J., Kazhdan, M., and Zorin, D. 2012. Volumetric basis reduction for global seamless parameterization of meshes. Tech. rep., New York University.Google Scholar
    20. Pietroni, N., Tarini, M., and Cignoni, P. 2010. Almost isometric mesh parameterization through abstract domains. IEEE Trans. on Vis. and Comp. Graph. 16, 4, 621–635. Google ScholarDigital Library
    21. Pietroni, N., Tarini, M., Sorkine, O., and Zorin, D. 2011. Global parametrization of range image sets. ACM Trans. Graph., 149:1–149:10. Google ScholarDigital Library
    22. Purnomo, B., Cohen, J. D., and Kumar, S. 2004. Seamless texture atlases. In Proc. of Symp. on Geom. Proc., ACM, 65–74. Google ScholarDigital Library
    23. Ray, N., Nivoliers, V., Lefebvre, S., and Levy, B. 2010. Invisible Seams. Comput. Graph. Forum. Google ScholarDigital Library
    24. Sander, P. V., Snyder, J., Gortler, S. J., and Hoppe, H. 2001. Texture mapping progressive meshes. In Proc. of SIGGRAPH ’01, ACM, New York, NY, USA, 409–416. Google ScholarDigital Library
    25. Sander, P. V., Wood, Z. J., Gortler, S. J., Snyder, J., and Hoppe, H. 2003. Multi-chart geometry images. In Proc. of Symp. on Geom. Proc., SGP ’03, 146–155. Google ScholarDigital Library
    26. Sheffer, A., Praun, E., and Rose, K. 2006. Mesh parameterization methods and their applications. Foundations and Trends® in Computer Graphics and Vision 2, 2, 105–171. Google ScholarDigital Library
    27. Tarini, M., Hormann, K., Cignoni, P., and Montani, C. 2004. Polycube-maps. ACM Trans. Graph. 23, 853–860. Google ScholarDigital Library
    28. Tarini, M., Puppo, E., Panozzo, D., Pietroni, N., and Cignoni, P. 2011. Simple quad domains for field aligned mesh parametrization. ACM Trans. Graph. 30, 6. Google ScholarDigital Library
    29. Tarini, M. 2012. Cylindrical and toroidal parameterizations without vertex seams. Journal of Graphics Tools 16, 3, 144–150.Google ScholarCross Ref
    30. Xia, J., Garcia, I., He, Y., Xin, S., and Patow, G. 2011. Editable polycube map for gpu-based subdivision surfaces. In Symp. on interactive 3D graphics and games, ACM, 151–158. Google ScholarDigital Library
    31. Yuksel, C., Keyser, J., and House, D. H. 2010. Mesh colors. ACM Trans. Grap. 29, 2, 15:1–15:11. Google ScholarDigital Library
    32. Zhang, L., Liu, L., Gotsman, C., and Huang, H. 2010. Mesh reconstruction by meshless denoising and parameterization. Computers & Graphics 34, 3, 198–208. Google ScholarDigital Library
    33. Zhou, K., Synder, J., Guo, B., and Shum, H.-Y. 2004. Iso-charts: stretch-driven mesh parameterization using spectral analysis. In Proc. of Symp. on Geom. Proc, ACM, SGP’04, 45–54. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: