“Versatile rigid-fluid coupling for incompressible SPH” by Akinci, Ihmsen, Akinci, Solenthaler and Teschner

  • ©Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias Teschner

Conference:


Type(s):


Title:

    Versatile rigid-fluid coupling for incompressible SPH

Presenter(s)/Author(s):



Abstract:


    We propose a momentum-conserving two-way coupling method of SPH fluids and arbitrary rigid objects based on hydrodynamic forces. Our approach samples the surface of rigid bodies with boundary particles that interact with the fluid, preventing deficiency issues and both spatial and temporal discontinuities. The problem of inhomogeneous boundary sampling is addressed by considering the relative contribution of a boundary particle to a physical quantity. This facilitates not only the initialization process but also allows the simulation of multiple dynamic objects. Thin structures consisting of only one layer or one line of boundary particles, and also non-manifold geometries can be handled without any additional treatment. We have integrated our approach into WCSPH and PCISPH, and demonstrate its stability and flexibility with several scenarios including multiphase flow.

References:


    1. Adams, B., Pauly, M., Keiser, R., and Guibas, L. 2007. Adaptively sampled particle fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 26, 3, 48–54. Google ScholarDigital Library
    2. Akinci, G., Ihmsen, M., Akinci, N., and Teschner, M. 2012. Parallel surface reconstruction for particle-based fluids. Computer Graphics Forum, to appear. Google ScholarDigital Library
    3. Allard, J., Courtecuisse, H., and Faure, F. 2011. Implicit FEM and fluid coupling on GPU for interactive multiphysics simulation. In SIGGRAPH Talks. Google ScholarDigital Library
    4. Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. (SIGGRAPH Proc.) 26, 3, 100–106. Google ScholarDigital Library
    5. Becker, M., and Teschner, M. 2007. Weakly compressible SPH for free surface flows. In Proc. of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 209–217. Google ScholarDigital Library
    6. Becker, M., Ihmsen, M., and Teschner, M. 2009. Corotated SPH for deformable solids. Eurographics Workshop on Natural Phenomena, 27–34. Google ScholarDigital Library
    7. Becker, M., Tessendorf, H., and Teschner, M. 2009. Direct forcing for Lagrangian rigid-fluid coupling. IEEE Transactions on Visualization and Computer Graphics 15, 3, 493–503. Google ScholarDigital Library
    8. Bell, N., Yu, Y., and Mucha, P. J. 2005. Particle-based simulation of granular materials. In Proc. of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 77–86. Google ScholarDigital Library
    9. Bodin, K., Lacoursiere, C., and Servin, M. 2011. Constraint fluid. IEEE Transactions on Visualization and Computer Graphics, 99, 1–12. Google ScholarDigital Library
    10. Botsch, M., and Kobbelt, L. 2004. A remeshing approach to multiresolution modeling. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symposium on Geometry processing, 185–192. Google ScholarDigital Library
    11. Carlson, M., Mucha, P., and Turk, G. 2004. Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 3, 377–384. Google ScholarDigital Library
    12. Chentanez, N., and Müller, M. 2010. Real-time simulation of large bodies of water with small scale details. In Proc. of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 197–206. Google ScholarDigital Library
    13. Chentanez, N., Goktekin, T., Feldman, B., and O’Brien, J. 2006. Simultaneous coupling of fluids and deformable bodies. In Proc. of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 83–89. Google ScholarDigital Library
    14. Clavet, S., Beaudoin, P., and Poulin, P. 2005. Particle-based viscoelastic fluid simulation. In SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, New York, NY, USA, 219–228. Google ScholarDigital Library
    15. Coumans, E., 2011. Bullet physics library (version 2.78) {software}. http://www.bulletphysics.org.Google Scholar
    16. Dalrymple, R., and Knio, O. 2001. SPH modeling of water waves. In Proc. Coastal Dynamics, 779–787.Google Scholar
    17. Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 973–981. Google ScholarDigital Library
    18. Harada, T., Koshizuka, S., and Kawaguchi, Y. 2007. Smoothed particle hydrodynamics on GPUs. In Proc. of Computer Graphics International, 63–70.Google Scholar
    19. Hu, X., and Adams, N. 2006. A multi-phase SPH method for macroscopic and mesoscopic flows. Journal of Computational Physics 213, 2, 844–861. Google ScholarDigital Library
    20. Ihmsen, M., Akinci, N., Gissler, M., and Teschner, M. 2010. Boundary handling and adaptive time-stepping for PCISPH. In Proc. of VRIPHYS, 79–88.Google Scholar
    21. Ihmsen, M., Akinci, N., Becker, M., and Teschner, M. 2011. A parallel SPH implementation on multi-core CPUs. Computer Graphics Forum 30, 1, 99–112.Google ScholarCross Ref
    22. Keiser, R., Adams, B., Dutré, P., Guibas, L., and Pauly, M. 2006. Multiresolution particle-based fluids. Tech. rep., ETH Zurich.Google Scholar
    23. Lenaerts, T., and Dutré, P. 2008. Unified SPH model for fluid-shell simulations. In ACM SIGGRAPH 2008 posters, SIGGRAPH ’08, 12:1–12:1. Google ScholarDigital Library
    24. Lenaerts, T., Adams, B., and Dutré, P. 2008. Porous flow in particle-based fluid simulations. In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers, ACM, New York, NY, USA, 1–8. Google ScholarDigital Library
    25. Libersky, L., and Petschek, A. 1991. Smooth particle hydrodynamics with strength of materials. Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method 395, 248–257.Google ScholarCross Ref
    26. Monaghan, J., and Kajtar, J. 2009. SPH particle boundary forces for arbitrary boundaries. Computer Physics Communications 180, 10, 1811–1820.Google ScholarCross Ref
    27. Monaghan, J., and Kos, A. 1999. Solitary waves on a Cretan beach. Journal of Waterway, Port, Coastal, and Ocean Engineering 125, 145.Google ScholarCross Ref
    28. Monaghan, J. 2005. Smoothed particle hydrodynamics. Reports on Progress in Physics 68, 8, 1703–1759.Google ScholarCross Ref
    29. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 154–159. Google ScholarDigital Library
    30. Müller, M., Schirm, S., Teschner, M., Heidelberger, B., and Gross, M. 2004. Interaction of fluids with deformable solids. Computer Animation and Virtual Worlds 15, 34, 159–171. Google ScholarDigital Library
    31. NVIDIA ARC, 2011. mental ray 3.9 {software}. http://www.mentalimages.com/products/mental-ray/about-mental-ray.html.Google Scholar
    32. Oger, G., Doring, M., Alessandrini, B., and Ferrant, P. 2006. Two-dimensional SPH simulations of wedge water entries. Journal of Computational Physics 213, 2, 803–822. Google ScholarDigital Library
    33. Oh, S., Kim, Y., and Roh, B. 2009. Impulse-based rigid body interaction in SPH. Computer Animation and Virtual Worlds 20, 2-3, 215–224. Google ScholarDigital Library
    34. Panizzo, A. 2004. Physical and numerical modelling of subaerial landslide generated waves. PhD thesis, Universita degli studi di L’Aquila, L’Aquila.Google Scholar
    35. Raveendran, K., Wojtan, C., and Turk, G. 2011. Hybrid smoothed particle hydrodynamics. In Proc. of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 33–42. Google ScholarDigital Library
    36. Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., and Fedkiw, R. 2008. Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. (SIGGRAPH Proc.) 27, 46:1–46:9. Google ScholarDigital Library
    37. Solenthaler, B., and Gross, M. 2011. Two-scale particle simulation. ACM Trans. on Graphics (SIGGRAPH Proc.) 30, 4, 81:1–81:8. Google ScholarDigital Library
    38. Solenthaler, B., and Pajarola, R. 2008. Density Contrast SPH Interfaces. In Proc. of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 211–218. Google ScholarDigital Library
    39. Solenthaler, B., and Pajarola, R. 2009. Predictive-corrective incompressible SPH. ACM Trans. on Graphics (SIGGRAPH Proc.) 28, 3, 1–6. Google ScholarDigital Library
    40. Solenthaler, B., Schläfli, J., and Pajarola, R. 2007. A unified particle model for fluid-solid interactions. Computer Animation and Virtual Worlds 18, 1, 69–82. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: