“Using isometries for computational design and fabrication” by Jiang, Wang, Inza, Dellinger, Rist, et al. …

  • ©Caigui Jiang, Hui Wang, Victor Ceballos Inza, Felix Dellinger, Florian Rist, Johannes Wallner, and Helmut Pottmann

Conference:


Type(s):


Title:

    Using isometries for computational design and fabrication

Presenter(s)/Author(s):



Abstract:


    We solve the task of representing free forms by an arrangement of panels that are manufacturable by precise isometric bending of surfaces made from a small number of molds. In fact we manage to solve the paneling task with surfaces of constant Gaussian curvature alone. This includes the case of developable surfaces which exhibit zero curvature. Our computations are based on an existing discrete model of isometric mappings between surfaces which for this occasion has been refined to obtain higher numerical accuracy. Further topics are interesting connections of the paneling problem with the geometry of Killing vector fields, designing and actuating isometries, curved folding in the double-curved case, and quad meshes with rigid faces that are nevertheless flexible.

References:


    1. Dmitrij V. Alekseevskij, Ernest B. Vinberg, and Aleksandr S. Solodovnikov. 1993. Geometry of spaces of constant curvature. In Geometry II. Springer, 1–138.Google Scholar
    2. Niccolo Baldassini, Nicolas Leduc, and Alexander Schiftner. 2013. Construction aware design of curved glass facades: The Eiffel Tower Pavilions. In Glass Performance Days Finland (Conference Proceedings). 406–410.Google Scholar
    3. Eric Baldwin. 2018. SOM Designs Kinematic Sculpture for Chicago Design Week. ArchDaily (Jan 19). https://www.archdaily.com/904506Google Scholar
    4. Mirela Ben-Chen, Adrian Butscher, Justin Solomon, and Leonidas Guibas. 2010. On Discrete Killing Vector Fields and Patterns on Surfaces. Comp. Graph. Forum 29, 5 (2010), 1701–1711.Google ScholarCross Ref
    5. Alexander Bobenko and Yuri Suris. 2008. Discrete differential geometry: Integrable Structure. American Math. Soc.Google Scholar
    6. David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer Quadrangulation. ACM Trans. Graph. 28, 3 (2009), 77:1–10.Google ScholarDigital Library
    7. Mario Botsch, Stephan Steinberg, Stephan Bischoff, and Leif Kobbelt. 2002. OpenMesh: A Generic and Efficient Polygon Mesh Data Structure. Proc. OpenSG Symposium. https://graphics.uni-bielefeld.de/publications/openmesh.pdf.Google Scholar
    8. Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark Pauly. 2012. Shape-Up: Shaping Discrete Geometry with Projections. Comp. Graph. Forum 31, 5 (2012), 1657–1667.Google ScholarDigital Library
    9. Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. 2008. Numerical geometry of non-rigid shapes. Springer.Google Scholar
    10. Frédéric Cazals and Marc Pouget. 2003. Estimating differential quantities using polynomial fitting of osculating jets. In Proc. Symp. Geometry Processing. 177–178.Google Scholar
    11. Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. 2018. Shape from Metric. ACM Trans. Graph. 37, 4 (2018), 63:1–17.Google ScholarDigital Library
    12. Sebastian Claici, Mikhail Bessmeltsev, Scott Schaefer, and Justin Solomon. 2017. Isometry-Aware Preconditioning for Mesh Parameterization. Comp. Graph. Forum 36, 5 (2017), 37–47.Google ScholarDigital Library
    13. Robert Connelly. 1987. Infinitesimal Rigidity. In Theory of rigid structures (unpublished collection). http://pi.math.cornell.edu/~connelly/rigidity.chapter.2.pdfGoogle Scholar
    14. Manfredo do Carmo. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall.Google Scholar
    15. Lionel du Peloux, Olivier Baverel, Jean-François Caron, and Frédéric Tayeb. 2013. From shape to shell: a design tool to materialize freeform shapes using gridshell structures. In Rethinking Prototyping. Proc. Design Modelling Symposium Berlin.Google Scholar
    16. Michael Eigensatz, Martin Kilian, Alexander Schiftner, Niloy Mitra, Helmut Pottmann, and Mark Pauly. 2010. Paneling Architectural Freeform Surfaces. ACM Trans. Graph. 29, 4 (2010), 45:1–10.Google ScholarDigital Library
    17. Konstantinos Gavriil, Ruslan Guseinov, Jesús Pérez, Davide Pellis, Paul Henderson, Florian Rist, Helmut Pottmann, and Bernd Bickel. 2020. Computational Design of Cold Bent Glass Façades. ACM Trans. Graph. 39, 6 (2020), 208:1–16.Google ScholarDigital Library
    18. Ruslan Guseinov, Eder Miguel, and Bernd Bickel. 2017. CurveUps: Shaping Objects from Flat Plates with Tension-Actuated Curvature. ACM Trans. Graph. 36, 4 (2017), 64:1–12.Google ScholarDigital Library
    19. David W. Henderson and Daina Taimina. 2001. Crocheting the Hyperbolic Plane. Math. Intelligencer 23, 2 (2001), 17–28.Google ScholarCross Ref
    20. Qi-Xing Huang, Bart Adams, Martin Wicke, and Leonidas Guibas. 2008. Non-Rigid Registration under Isometric Deformations. Comp. Graph. Forum 27, 5 (2008), 1449–1457.Google ScholarCross Ref
    21. Ivan Izmestiev. 2017. Classification of flexible Kokotsakis polyhedra with quadrangular base. Int. Math. Res. Not. 3 (2017), 715–808.Google Scholar
    22. Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing library. https://libigl.github.ioGoogle Scholar
    23. Caigui Jiang, Cheng Wang, Florian Rist, Johannes Wallner, and Helmut Pottmann. 2020. Quad-mesh based isometric mappings and developable surfaces. ACM Trans. Graph. 39, 4 (2020), 128:1–13.Google ScholarDigital Library
    24. L. Klein, To. Wagner, C. Buchheim, and D. Biermann. 2014. A procedure for the evaluation and compensation of form errors by means of global isometric registration with subsequent local reoptimization. Prod. Eng. 8 (2014), 81–89.Google ScholarCross Ref
    25. Mina Konaković-Luković, Julian Panetta, Keenan Crane, and Mark Pauly. 2018. Rapid Deployment of Curved Surfaces via Programmable Auxetics. ACM Trans. Graph. 37, 4 (2018), 106:1–13.Google ScholarDigital Library
    26. Michael Lewis. 1973. Roof Cladding of the Sydney Opera House. J. & Proc. Royal Soc. New South Wales 106 (1973), 18–32.Google Scholar
    27. Julian Lienhard, Simon Schleicher, Simon Poppinga, Tom Masselter, Markuks Milwich, Thomas Speck, and Jan Knippers. 2011. Flectofin: a hingeless flapping mechanism inspired by nature. Bioinspir. Biomim. 6, Article 045001 (2011).Google Scholar
    28. Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven J. Gortler. 2009. A local/global approach to mesh parametrization. Comp. Graph. Forum 27, 5 (2009), 1495–1504.Google ScholarCross Ref
    29. Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, and Wenping Wang. 2006. Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graph. 25, 3 (2006), 681–689.Google ScholarDigital Library
    30. Stuart P Lloyd. 1982. Least Squares Quantization in PCM. IEEE Trans. Information Th. 28 (1982), 129–137.Google ScholarDigital Library
    31. Kaj Madsen, Hans Bruun Nielsen, and Ole Tingleff. 2004. Methods for non-linear least squares problems (2nd ed.). Technical Univ. Denmark.Google Scholar
    32. Luigi Malomo, Jesús Pérez, Emmanuel Iarussi, Nico Pietroni, Eder Miguel, Paolo Cignoni, and Bernd Bickel. 2018. FlexMaps: Computational Design of Flat Flexible Shells for Shaping 3D Objects. ACM Trans. Graph. 37, 6 (2018), 231:1–14.Google ScholarDigital Library
    33. Tom Masselter, Simon Poppinga, Julian Lienhard, Simon Schleicher, and Thomas Speck. 2012. The flower of Strelitzia reginae as concept generator for the development of a technical deformation system for architectural purposes. In Proc. 7th. Plant Biomechanics Int. Conf. INRIA, 389–392.Google Scholar
    34. Sumner B. Myers. 1936. Isometries of 2-dimensional Riemannian manifolds into themselves. Proc. Nat. Acad. Sc. USA 22 (1936), 297–300.Google ScholarCross Ref
    35. Julian Panetta, Mina Konaković-Luković, Florin Isvoranu, Etienne Bouleau, and Mark Pauly. 2019. X-Shells: A New Class of Deployable Beam Structures. ACM Trans. Graph. 38, 4 (2019), 83:1–15.Google ScholarDigital Library
    36. Chi-Han Peng, Caigui Jiang, Peter Wonka, and Helmut Pottmann. 2019. Checkerboard Patterns with Black Rectangles. ACM Trans. Graph. 38, 6 (2019), 171:1–13.Google ScholarDigital Library
    37. Nico Pietroni, Marco Tarini, and Paolo Cignoni. 2010. Almost Isometric Mesh Parameterization through Abstract Domains. TVCG 16, 4 (2010), 621–635.Google ScholarDigital Library
    38. Helmut Pottmann, Michael Eigensatz, Amir Vaxman, and Johannes Wallner. 2015. Architectural Geometry. Computers & Graphics 47 (2015), 145–164.Google ScholarDigital Library
    39. Helmut Pottmann, Qi-Xing Huang, Yong-Liang Yang, and Shi-Min Hu. 2006. Geometry and convergence analysis of algorithms for registration of 3D shapes. Int. J. Computer Vision 67, 3 (2006), 277–296.Google ScholarDigital Library
    40. Helmut Pottmann, Johannes Wallner, and Stefan Leopoldseder. 2001. Kinematical methods for the classification, reconstruction and inspection of surfaces. In SMAI 2001: Congrès national de mathématiques appliquées et industrielles. 51–60.Google Scholar
    41. Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. 2019. Modeling Curved Folding with Freeform Deformations. ACM Trans. Graph. 38, 6 (2019), 170:1–12.Google ScholarDigital Library
    42. Idzhad Kh. Sabitov. 1992. Local Theory of Bendings of Surfaces. In Geometry III. Springer, 179–256.Google Scholar
    43. Alexei Sacharow, Jonathan Balzer, Dirk Biermann, and Tobias Surmann. 2011. Non-rigid isometric ICP. Computer-Aided Design 43 (2011), 1758–1768.Google ScholarDigital Library
    44. Josua Sassen, Behrend Heeren, Klaus Hildebrandt, and Martin Rumpf. 2020. Geometric optimization using nonlinear rotation-invariant coordinates. Computer Aided Geom. Des. 77, Article 101829 (2020).Google Scholar
    45. Robert Sauer. 1970. Differenzengeometrie. Springer.Google Scholar
    46. Alexander Schiftner, Michael Eigensatz, Martin Kilian, and Gery Chinzi. 2013. Large scale double curved glass facades made feasible – The Arena Corinthians West Facade. In Glass Performance Days Finland (Conference Proceedings). 494 — 498.Google Scholar
    47. Justin Solomon, Mirela Ben-Chen, Adrian Butscher, and Leonidas Guibas. 2011a. As-Killing-As-Possible Vector Fields for Planar Deformation. Comp. Graph. Forum 30, 5 (2011), 1543–1552.Google ScholarCross Ref
    48. Justin Solomon, Mirela Ben-Chen, Adrian Butscher, and Leonidas Guibas. 2011b. Discovery of Intrinsic Primitives on Triangle Meshes. Comp. Graph. Forum 30, 2 (2011), 365–374.Google ScholarCross Ref
    49. Olga Sorkine and Mark Alexa. 2007. As-rigid-as-possible surface modeling. In Proc. Symposium Geometry Processing. 109–116.Google Scholar
    50. Sivan Toledo. 2003. Taucs, A Library of Sparse Linear Solvers. Tel Aviv University. www.tau.ac.il/~stoledo/taucsGoogle Scholar
    51. Michael Wand, Philipp Jenke, Qixing Huang, Martin Bokeloh, Leonidas Guibas, and Andreas Schilling. 2007. Reconstruction of Deforming Geometry from Time-Varying Point Clouds. In Proc. Symp. Geometry Processing. 49–58.Google Scholar
    52. Hui Wang, Davide Pellis, Florian Rist, Helmut Pottmann, and Christian Müller. 2019. Discrete Geodesic Parallel Coordinates. ACM Trans. Graph. 38, 6 (2019), 173:1–13.Google ScholarDigital Library
    53. Walter Wunderlich. 1951. Zur Differenzengeometrie der Flächen konstanter negativer Krümmung. Sitzungsber. Österr. Ak. Wiss. II 160 (1951), 39–77.Google Scholar


ACM Digital Library Publication:



Overview Page: