“Using Blur to Affect Perceived Distance and Size” by Held, Cooper, O’Brien and Banks

  • ©Robert T. Held, Emily A. Cooper, James F. O'Brien, and Martin (Marty) S. Banks

Conference:


Type:


Title:

    Using Blur to Affect Perceived Distance and Size

Presenter(s)/Author(s):



Abstract:


    We present a probabilistic model of how viewers may use defocus blur in conjunction with other pictorial cues to estimate the absolute distances to objects in a scene. Our model explains how the pattern of blur in an image together with relative depth cues indicates the apparent scale of the image’s contents. From the model, we develop a semiautomated algorithm that applies blur to a sharply rendered image and thereby changes the apparent distance and scale of the scene’s contents. To examine the correspondence between the model/algorithm and actual viewer experience, we conducted an experiment with human viewers and compared their estimates of absolute distance to the model’s predictions. We did this for images with geometrically correct blur due to defocus and for images with commonly used approximations to the correct blur. The agreement between the experimental data and model predictions was excellent. The model predicts that some approximations should work well and that others should not. Human viewers responded to the various types of blur in much the way the model predicts. The model and algorithm allow one to manipulate blur precisely and to achieve the desired perceived scale efficiently.

References:


    1. Akeley, K., Watt, S. J., Girshick, A. R., and Banks, M. S. 2004. A stereo display prototype with multiple focal distances. ACM Trans. Graph. 23, 3, 804–813. 
    2. Barsky, B. A. 2004. Vision-Realistic rendering: Simulation of the scanned foveal image from wavefront data of human subjects. In Proceedings of the 1st Symposium on Applied Perception in Graphics and Visualization (APGV’04). 73–81. 
    3. Barsky, B. A., Horn, D. R., Klein, S. A., Pang, J. A., and Yu, M. 2003a. Camera models and optical systems used in computer graphics: Part I, Object-Based techniques. In Proceedings of the International Conference on Computational Science and its Applications (ICCSA’03), Montreal, 2nd International Workshop on Computer Graphics and Geometric Modeling (CGGM’03). 246–255. 
    4. Barsky, B. A., Horn, D. R., Klein, S. A., Pang, J. A., and Yu, M. 2003b. Camera models and optical systems used in computer graphics: Part II, Image-Based techniques. In Proceedings of the International Conference on Computational Science and its Applications (ICCSA’03), 2nd International Workshop on Computer Graphics and Geometric Modeling (CGGM’03). 256–265. 
    5. Bell, J. A. 1924. Theory of mechanical miniatures in cinematography. Trans. SMPTE 18, 119.
    6. Brillault-O’Mahony, B. 1991. New method for vanishing-point detection. CVGIP: Image Underst. 54, 2, 289–300. 
    7. Burge, J. D., Fowlkes, C. C., and Banks, M. 2010. Natural-scene statistics predict how the figure-ground cue of convexity affects human depth perception. J. Neuroscience. To appear.
    8. Canny, J. 1986. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 6, 679–698. 
    9. Chinnock, C. 2009. Personal communication.
    10. Cole, F., DeCarlo, D., Finkelstein, A., Kin, K., Morley, K., and Santella, A. 2006. Directing gaze in 3d models with stylized focus. In Proceedings of the Eurographics Symposium on Rendering. 377–387. 
    11. Cook, R. L., Carpenter, L., and Catmull, E. 1987. The REYES image rendering architecture. SIGGRAPH Comput. Graph. 21, 4, 95–102. 
    12. Cook, R. L., Porter, T., and Carpenter, L. 1984. Distributed ray tracing. SIGGRAPH Comput. Graph. 18, 3, 137–145. 
    13. Coughlan, J. M. and Yuille, A. L. 2003. Manhattan world: Orientation and outlier detection by bayesian inference. Neur. Comput. 15, 5, 1063–1088.
    14. DiPaola, S., Riebe, C., and Enns, J. 2009. Rembrandt’s textural agency: A shared perspective in visual art and science. In Leonardo. To appear.
    15. Egusa, H. 1983. Effects of brightness, hue, and saturation on perceived depth between adjacent regions in the visual field. Perception 12, 167–175.
    16. Fearing, P. 1995. Importance ordering for real-time depth of field. In Proceedings of the 3rd International Computer Science Conference on Image Analysis Applications and Computer Graphics. 372–380. 
    17. Fielding, R. 1985. Special Effects Cinematography, 4th Ed. Focal Press, Oxford.
    18. Fisher, S. K. and Ciuffreda, K. J. 1988. Accommodation and apparent distance. Perception 17, 609–621.
    19. Flickr. 2009. Flickr group: Tilt shift miniaturization fakes. www.flickr.com/photos/.
    20. Fry, G. A., Bridgeman, C. S., and Ellerbrock, V. J. 1949. The effects of atmospheric scattering on binocular depth perception. Amer. J. Optom. Arch. Amer. Acad. Optom. 26, 9–15.
    21. Green, P., Sun, W., Matusik, W., and Durand, F. 2007. Multi-Aperture photography. ACM Trans. Graph. 26, 3, 68. 
    22. Haeberli, P. and Akeley, K. 1990. The accumulation buffer: Hardware support for high-quality rendering. SIGGRAPH Comput. Graph. 24, 4, 309–318. 
    23. Hecht, H., Kaiser, M. K., and Banks, M. S. 1996. Gravitational acceleration as a cue for absolute size and distance? Perception Psychophys. 58, 1066–1075.
    24. Hillaire, S., Lécuyer, A., Cozot, R., and Casiez, G. 2007. Depth-of-field blur effects for first-person navigation in virtual environments. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology (VRST’07). 203–206. 
    25. Hillaire, S., Lecuyer, A., Cozot, R., and Casiez, G. 2008. Using an eye-tracking system to improve camera motions and depth-of-field blur effects in virtual environments. In Proceedings of the IEEE Virtual Reality Conference. 47–50.
    26. Ichihara, S., Kitagawa, N., and Akutsu, H. 2007. Contrast and depth perception: Effects of texture contrast and area contrast. Perception 36, 686–695.
    27. Kingslake, R. 1992. Optics in Photography. SPIE Optical Engineering Press, Bellingham, WA.
    28. Kolb, C., Mitchell, D., and Hanrahan, P. 1995. A realistic camera model for computer graphics. In Proceedings of ACM SIGGRAPH. 317–324. 
    29. Kosara, R., Miksch, S., Hauser, F., Schrammel, J., Giller, V., and Tscheligi, M. 2002. Useful properties of semantic depth of field for better f+c visualization. In Proceedings of the Joint Eurographics – IEEE TCVG Symposium on Visualization. 205–210. 
    30. Kosara, R., Miksch, S., and Hauser, H. 2001. Semantic depth of field. In Proceedings of the IEEE Symposium on Information Visualization. 97–104. 
    31. Laforet, V. 2007. A really big show. New York Times. (5/31/07).
    32. Larsen, J. S. 1971. Sagittal growth of the eye. Acta Opthalmologica 49, 6, 873–886.
    33. Levin, A., Fergus, R., Durand, F., and Freeman, W. T. 2007. Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 26, 3, 70–1–70–8. 
    34. Marshall, J., Burbeck, C., Ariely, D., Rolland, J., and Martin, K. 1996. Occlusion edge blur: A cue to relative visual depth. J. Optical Soc. Amer. A 13, 681–688.
    35. Masaoka, K., Hanazato, A., Emoto, M., Yamanoue, H., Nojiri, Y., and Okano, F. 2006. Spatial distortion prediction system for stereoscopic images. J. Electron. Imaging 15, 1, 013002–1 — 013002–12.
    36. Mather, G. 1996. Image blur as a pictorial depth cue. Proc. Royal Soc. Biol. Sci. 263, 1367, 169–172.
    37. Mather, G. and Smith, D. R. R. 2000. Depth cue integration: Stereopsis and image blur. Vision Res. 40, 25, 3501–3506.
    38. Mather, G. and Smith, D. R. R. 2002. Blur discrimination and it’s relationship to blur-mediated depth perception. Perception 31, 10, 1211–1219.
    39. McCloskey, M. and Langer, M. 2009. Planar orientation from blur gradients in a single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2318–2325.
    40. Meesters, L., IJsselsteijn, W., and Seuntiens, P. 2004. A survey of perceptual evaluations and requirements of three-dimensional tv. IEEE Trans. Circ. Syst. Video Technol. 14, 3, 381–391. 
    41. Mon-Williams, M. and Tresilian, J. R. 2000. Ordinal depth information from accommodation. Ergonomics 43, 3, 391–404.
    42. Moreno-Noguer, F., Belhumeur, P. N., and Nayar, S. K. 2007. Active refocusing of images and videos. ACM Trans. Graph. 26, 3, 67–1–67–9. 
    43. Mulder, J. D. and van Liere, R. 2000. Fast perception-based depth of field rendering. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology. 129–133. 
    44. Okatani, T. and Deguchi, K. 2007. Estimating scale of a scene from a single image based on defocus blur and scene geometry. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1–8.
    45. Palmer, S. E. and Brooks, J. L. 2008. Edge-Region grouping in figure-ground organization and depth perception. J. Exper. Psychol. Hum. Perception Perform. 24, 6 (12), 1353–1371.
    46. Pentland, A. P. 1987. A new sense for depth of field. IEEE Trans. Pattern Anal. Mach. 9, 4, 523–531. 
    47. Potmesil, M. and Chakravarty, I. 1981. A lens and aperture camera model for synthetic image generation. SIGGRAPH Comput. Graph. 15, 3, 297–305. 
    48. Rohaly, A. and Wilson, H. 1999. The effects of contrast on perceived depth and depth discriminations. Vision Res. 39, 9–18.
    49. Rokita, P. 1996. Generating depth of-field effects in virtual reality applications. IEEE Comput. Graph. Appl. 16, 2, 18–21. 
    50. Saxberg, B. V. H. 1987. Projected free fall trajectories: 1. Theory and simulation. Biol. Cybernet. 56, 159–175. 
    51. Schechner, Y. Y. and Kiryati, N. 2000. Depth from defocus vs. stereo: How different really are they? Int. J. Comput. Vision 29, 2, 141–162. 
    52. Schiffman, B. 2008. Movie industry doubles down on 3D. Wired Mag.
    53. Sedgwick, H. A. 1986. Space Perception. Wiley.
    54. Spring, K. and Stiles, W. S. 1948. Variation of pupil size with change in the angle at which the light stimulus strikes the retina. British J. Ophthalmol. 32, 6, 340–346.
    55. Vishwanath, D. 2008. The focal blur gradient affects perceived absolute distance {ECVP abstract supplement}. Perception 27, 130.
    56. Wallach, H. and Norris, C. M. 1963. Accommodation as a distance cue. Amer. J. Psychol. 76, 659–664.
    57. Watson, J., Banks, M., Hofsten, C., and Royden, C. S. 1992. Gravity as a monocular cue for perception of absolute distance and/or absolute size. Perception 21, 1, 69–76.
    58. Watt, S. J., Akeley, K., Ernst, M. O., and Banks, M. S. 2005. Focus cues affect perceived depth. J. Vis. 5, 10, 12, 834–862.
    59. Wilson, B. J., Decker, K. E., and Roorda, A. 2002. Monochromatic aberrations provide an odd-error cue to focus direction. J. Optical Soc. Amer. A 19, 833–839.
    60. Yamanoue, H. 1997. The relation between size distortion and shooting conditions for stereoscopic images. J. SMPTE 106, 4, 225–232.
    61. Yamanoue, H., Okui, M., and Yuyama, I. 2000. A study on the relationship between shooting conditions and cardboard effect of stereoscopic images. IEEE Trans. Circ. Syst. Video Technol. 10, 3, 411–416. 

ACM Digital Library Publication:



Overview Page: