“Unifying points, beams, and paths in volumetric light transport simulation” by Křivánek, Georgiev, Hachisuka, Vévoda, Šik, et al. …

  • ©

Conference:


Type(s):


Title:

    Unifying points, beams, and paths in volumetric light transport simulation

Session/Category Title:   Light Transport


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Efficiently computing light transport in participating media in a manner that is robust to variations in media density, scattering albedo, and anisotropy is a difficult and important problem in realistic image synthesis. While many specialized rendering techniques can efficiently resolve subsets of transport in specific media, no single approach can robustly handle all types of effects. To address this problem we unify volumetric density estimation, using point and beam estimators, and Monte Carlo solutions to the path integral formulation of the rendering and radiative transport equations. We extend multiple importance sampling to correctly handle combinations of these fundamentally different classes of estimators. This, in turn, allows us to develop a single rendering algorithm that correctly combines the benefits and mediates the limitations of these powerful volume rendering techniques.

References:


    1. Arvo, J., and Kirk, D. 1990. Particle transport and image synthesis. In Proc. of SIGGRAPH ’90, ACM, New York, NY. Google ScholarDigital Library
    2. Arvo, J. 1993. Transfer functions in global illumination. In ACM SIGGRAPH 93 Course Notes – Global Illumination.Google Scholar
    3. Banerjee, K. 2010. Kernel Density Estimator Methods for Monte Carlo Radiation Transport. PhD thesis, University of Michigan.Google Scholar
    4. Davidovič, T., and Georgiev, I., 2012. SmallVCM. http://www.smallvcm.com/.Google Scholar
    5. D’Eon, E., and Irving, G. 2011. A quantized-diffusion model for rendering translucent materials. ACM Trans. Graph. (Proc. of SIGGRAPH) 30, 4. Google ScholarDigital Library
    6. Dunn, K., and Wilson, P. 2012. Kernel density estimators for Monte Carlo tallies on unstructured meshes. Transactions of the American Nuclear Society 107, 490–493.Google Scholar
    7. Georgiev, I., Křivánek, J., Davidovič, T., and Slusallek, P. 2012. Light transport simulation with vertex connection and merging. ACM Trans. Graph. (Proc. of SIGGRAPH Asia) 31, 6. Google ScholarDigital Library
    8. Georgiev, I., Křivánek, J., Hachisuka, T., Nowrouzezahrai, D., and Jarosz, W. 2013. Joint importance sampling of low-order volumetric scattering. ACM Trans. Graph. (Proc. of SIGGRAPH Asia) 32, 6 (Nov.). Google ScholarDigital Library
    9. Gkioulekas, I., Zhao, S., Bala, K., Zickler, T., and Levin, A. 2013. Inverse volume rendering with material dictionaries. ACM Trans. Graph. 32, 6 (Nov.), 162:1–162:13. Google ScholarDigital Library
    10. Hachisuka, T., Ogaki, S., and Jensen, H. W. 2008. Progressive photon mapping. ACM Trans. Graph. (Proc. of SIGGRAPH Asia) 27, 5. Google ScholarDigital Library
    11. Hachisuka, T., Pantaleoni, J., and Jensen, H. W. 2012. A path space extension for robust light transport simulation. ACM Trans. Graph. (Proc. of SIGGRAPH Asia) 31, 6 (Nov.). Google ScholarDigital Library
    12. Hachisuka, T., Kaplanyan, A. S., and Dachsbacher, C. 2014. Multiplexed Metropolis light transport. ACM Trans. Graph. (Proc. of SIGGRAPH 2014) 33, 4. Google ScholarDigital Library
    13. Immel, D. S., Cohen, M. F., and Greenberg, D. P. 1986. A radiosity method for non-diffuse environments. ACM SIGGRAPH Computer Graphics 20, 4, 133–142. Google ScholarDigital Library
    14. Jarosz, W., Zwicker, M., and Jensen, H. W. 2008. The beam radiance estimate for volumetric photon mapping. Computer Graphics Forum (Proc. of Eurographics) 27, 2.Google ScholarCross Ref
    15. Jarosz, W., Nowrouzezahrai, D., Sadeghi, I., and Jensen, H. W. 2011. A comprehensive theory of volumetric radiance estimation using photon points and beams. ACM Trans. Graph. 30, 1, 5:1–5:19. Google ScholarDigital Library
    16. Jarosz, W., Nowrouzezahrai, D., Thomas, R., Sloan, P.-P., and Zwicker, M. 2011. Progressive photon beams. ACM Trans. Graph. (Proc. of SIGGRAPH Asia) 30, 6. Google ScholarDigital Library
    17. Jensen, H. W., and Christensen, P. H. 1998. Efficient simulation of light transport in scenes with participating media using photon maps. In Proc. of SIGGRAPH ’98. Google ScholarDigital Library
    18. Jensen, H. W. 1996. Global illumination using photon maps. In Proc. of Eurographics Rendering Workshop. Google ScholarDigital Library
    19. Kajiya, J. T. 1986. The rendering equation. In Computer Graphics (Proc. of SIGGRAPH). Google ScholarDigital Library
    20. Knaus, C., and Zwicker, M. 2011. Progressive photon mapping: A probabilistic approach. ACM Transactions on Graphics 30, 3. Google ScholarDigital Library
    21. Lafortune, E. P., and Willems, Y. D. 1993. Bi-directional path tracing. In Compugraphics ’93.Google Scholar
    22. Lafortune, E. P., and Willems, Y. D. 1996. Rendering participating media with bidirectional path tracing. In Proc. of the Eurographics Workshop on Rendering. Google ScholarDigital Library
    23. MacMillan, D. B. 1966. Comparison of statistical estimators for neutron Monte Carlo calculations. Nuclear Science and Engineering 26, 3 (Nov.), 366–372.Google ScholarCross Ref
    24. Novák, J., Nowrouzezahrai, D., Dachsbacher, C., and Jarosz, W. 2012. Progressive virtual beam lights. Proc. of Eurographics Symposium on Rendering 31, 4 (June).Google Scholar
    25. Novák, J., Nowrouzezahrai, D., Dachsbacher, C., and Jarosz, W. 2012. Virtual ray lights for rendering scenes with participating media. ACM Trans. Graph. (Proc. of SIGGRAPH) 31, 4 (July). Google ScholarDigital Library
    26. Pauly, M., Kollig, T., and Keller, A. 2000. Metropolis light transport for participating media. In Rendering Techniques (Proc. of Eurographics Workshop on Rendering). Google ScholarDigital Library
    27. Spanier, J., and Gelbard, E. M. 1969. Monte Carlo principles and neutron transport problems. Addison-Wesley.Google Scholar
    28. Spanier, J. 1966. Two pairs of families of estimators for transport problems. SIAM Journal on Applied Mathematics 14, 4, 702–713.Google ScholarCross Ref
    29. Veach, E., and Guibas, L. 1994. Bidirectional estimators for light transport. In Proc. of Eurographics Rendering Workshop.Google Scholar
    30. Veach, E., and Guibas, L. J. 1995. Optimally combining sampling techniques for Monte Carlo rendering. In Proc. of SIGGRAPH ’95. Google ScholarDigital Library
    31. Veach, E. 1997. Robust Monte Carlo methods for light transport simulation. PhD thesis, Stanford, CA, USA. Google ScholarDigital Library
    32. Vorba, J. 2011. Bidirectional photon mapping. In Proc. of the Central European Seminar on Computer Graphics (CESCG ’11).Google Scholar


ACM Digital Library Publication:



Overview Page: