“Unified particle system for multiple-fluid flow and porous material” by Ren, Xu and Li

  • ©Bo Ren, Ben Xu, and Chenfeng Li




    Unified particle system for multiple-fluid flow and porous material

Session/Category Title: Summary and Q&A: Fluid Simulation 3



    Porous materials are common in daily life. They include granular material (e.g. sand) that behaves like liquid flow when mixed with fluid and foam material (e.g. sponge) that deforms like solid when interacting with liquid. The underlying physics is further complicated when multiple fluids interact with porous materials involving coupling between rigid and fluid bodies, which may follow different physics models such as the Darcy’s law and the multiple-fluid Navier-Stokes equations. We propose a unified particle framework for the simulation of multiple-fluid flows and porous materials. A novel virtual phase concept is introduced to avoid explicit particle state tracking and runtime particle deletion/insertion. Our unified model is flexible and stable to cope with multiple fluid interacting with porous materials, and it can ensure consistent mass and momentum transport over the whole simulation space.


    1. Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias Teschner. 2012. Versatile Rigid-Fluid Coupling for Incompressible SPH. ACM Trans. Graph. 31, 4, Article 62 (July 2012), 8 pages.Google ScholarDigital Library
    2. Abdelraheem M. Aly and Z.A.S. Raizah. 2018. Incompressible smoothed particle hydrodynamics (ISPH) method for natural convection in a nanofluid-filled cavity including rotating solid structures. International Journal of Mechanical Sciences 146-147 (2018), 125 — 140.Google ScholarCross Ref
    3. Seungho Baek, Kiwon Um, and JungHyun Han. 2015. Muddy water animation with different details. Computer Animation and Virtual Worlds 26, 3-4 (2015), 347–355.Google ScholarDigital Library
    4. Stefan Band, Christoph Gissler, Markus Ihmsen, Jens Cornelis, Andreas Peer, and Matthias Teschner. 2018a. Pressure Boundaries for Implicit Incompressible SPH. ACM Trans. Graph. 37, 2, Article 14 (Feb. 2018), 11 pages.Google ScholarDigital Library
    5. Stefan Band, Christoph Gissler, Andreas Peer, and Matthias Teschner. 2018b. MLS pressure boundaries for divergence-free and viscous SPH fluids. Computers & Graphics 76 (2018), 37 — 46.Google ScholarCross Ref
    6. Kai Bao, Xiaolong Wu, Hui Zhang, and Enhua Wu. 2010. Volume fraction based miscible and immiscible fluid animation. Computer Animation and Virtual Worlds 21, 3-4 (2010), 401–410.Google Scholar
    7. Markus Becker and Matthias Teschner. 2007a. Weakly Compressible SPH for Free Surface Flows. Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation 9, 209–217.Google ScholarDigital Library
    8. Markus Becker and Matthias Teschner. 2007b. Weakly compressible SPH for free surface flows. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, 209–217.Google ScholarDigital Library
    9. Jan Bender and Dan Koschier. 2016. Divergence-Free SPH for Incompressible and Viscous Fluids. IEEE Transactions on Visualization and Computer Graphics 23 (06 2016), 1–1.Google Scholar
    10. J. Bender, T. Kugelstadt, M. Weiler, and D. Koschier. 2020. Implicit Frictional Boundary Handling for SPH. IEEE Transactions on Visualization and Computer Graphics 26, 10 (2020), 2982–2993.Google ScholarCross Ref
    11. Stefano Berrone, Sandra Pieraccini, and Stefano Scialo. 2017. Flow simulations in porous media with immersed intersecting fractures. JOURNAL OF COMPUTATIONAL PHYSICS 345 (SEP 15 2017), 768–791. } Google ScholarDigital Library
    12. Henry Philibert Gaspard Darcy. 1856. Les Fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau, etc. V. Dalamont.Google Scholar
    13. E. Detournay and Alexander H.-D. Cheng. 1993. 5 – Fundamentals of Poroelasticity. In Analysis and Design Methods, CHARLES FAIRHURST (Ed.). Pergamon, Oxford, 113 — 171.Google Scholar
    14. Mengyuan Ding, Xuchen Han, Stephanie Wang, Theodore F. Gast, and Joseph M. Teran. 2019. A Thermomechanical Material Point Method for Baking and Cooking. ACM Trans. Graph. 38, 6, Article 192 (Nov. 2019), 14 pages.Google ScholarDigital Library
    15. Yun Fei, Christopher Batty, Eitan Grinspun, and Changxi Zheng. 2018. A multi-scale model for simulating liquid-fabric interactions. ACM Transactions on Graphics 37 (07 2018), 1–16.Google Scholar
    16. Yun (Raymond) Fei, Henrique Teles Maia, Christopher Batty, Changxi Zheng, and Eitan Grinspun. 2017. A Multi-Scale Model for Simulating Liquid-Hair Interactions. ACM Trans. Graph. 36, 4, Article 56 (July 2017), 17 pages.Google ScholarDigital Library
    17. Ming Gao, Andre Pradhana, Xuchen Han, Qi Guo, Grant Kot, Eftychios Sifakis, and Chenfanfu Jiang. 2018. Animating Fluid Sediment Mixture in Particle-Laden Flows. ACM Trans. Graph. 37, 4, Article 149 (July 2018), 11 pages.Google ScholarDigital Library
    18. Christoph Gissler, Andreas Peer, Stefan Band, Jan Bender, and Matthias Teschner. 2019. Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Coupling. ACM Trans. Graph. 38, 1, Article 5 (Jan. 2019), 13 pages.Google ScholarDigital Library
    19. R Hilfer. 2006. Macroscopic capillarity and hysteresis for flow in porous media. Physical review. E, Statistical, nonlinear, and soft matter physics 73 (02 2006), 016307.Google Scholar
    20. Jeong-Mo Hong and Chang-Hun Kim. 2005. Discontinuous Fluids. ACM Trans. Graph. 24, 3 (July 2005), 915–920.Google ScholarDigital Library
    21. Markus Huber, Simon Pabst, and Wolfgang Straßer. 2011. Wet Cloth Simulation. In ACM SIGGRAPH 2011 Posters (Vancouver, British Columbia, Canada) (SIGGRAPH ’11). Association for Computing Machinery, New York, NY, USA, Article 10, 1 pages.Google Scholar
    22. Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner. 2014a. Implicit Incompressible SPH. IEEE Transactions on Visualization and Computer Graphics 20, 3 (March 2014), 426–435.Google ScholarDigital Library
    23. Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias Teschner. 2014b. SPH Fluids in Computer Graphics. In Eurographics 2014 – State of the Art Reports, Sylvain Lefebvre and Michela Spagnuolo (Eds.). The Eurographics Association.Google Scholar
    24. Yi Jin, Xiang Li, Mengyu Zhao, Xianhe Liu, and Hui Li. 2017. A mathematical model of fluid flow in tight porous media based on fractal assumptions. International journal of heat and mass transfer 108 (2017), 1078–1088.Google ScholarCross Ref
    25. Nahyup Kang, Jinho Park, Junyong Noh, and Sung Yong Shin. 2010. A hybrid approach to multiple fluid simulation using volume fractions. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 685–694.Google Scholar
    26. Byungmoon Kim. 2010. Multi-phase Fluid Simulations Using Regional Level Sets. ACM Trans. Graph. 29, 6, Article 175 (Dec. 2010), 8 pages.Google ScholarDigital Library
    27. Dan Koschier and Jan Bender. 2017. Density Maps for Improved SPH Boundary Handling. In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA ’17). Association for Computing Machinery, New York, NY, USA, Article 1, 10 pages.Google ScholarDigital Library
    28. Dan Koschier, J. Bender, B. Solenthaler, and Matthias Teschner. 2019. Smoothed Particle Hydrodynamics Techniques for the Physics Based Simulation of Fluids and Solids. In Eurographics.Google Scholar
    29. Toon Lenaerts, Bart Adams, and Philip Dutre. 2008. Porous flow in particle-based fluid simulations. ACM TRANSACTIONS ON GRAPHICS 27, 3 (AUG 2008). ACM SIGGRAPH Conference 2008, Singapore, SINGAPORE, AUG 11-15, 2008.Google Scholar
    30. Toon Lenaerts and Philip Dutre. 2009. Mixing Fluids and Granular Materials. Computer Graphics Forum 28, 2 (2009), 213–218.Google ScholarCross Ref
    31. Wei-Chin Lin. 2015. Boundary handling and porous flow for fluid-hair interactions. COMPUTERS & GRAPHICS-UK 52 (NOV 2015), 33–42. } 11th European Conference on Visual Media Production (CVMP), London, ENGLAND, NOV 13-14, 2014. Google ScholarDigital Library
    32. Frank Losasso, Tamar Shinar, Andrew Selle, and Ronald Fedkiw. 2006. Multiple Interacting Liquids. ACM Trans. Graph. 25, 3 (July 2006), 812–819.Google ScholarDigital Library
    33. Miles Macklin and Matthias Müller. 2013. Position Based Fluids. ACM Trans. Graph. 32, 4, Article 104 (July 2013), 12 pages.Google ScholarDigital Library
    34. J.J. Monaghan. 1994. Simulating Free Surface Flows with SPH. J. Comput. Phys. 110, 2 (1994), 399 — 406.Google ScholarDigital Library
    35. Matthias Müller, David Charypar, and Markus H Gross. 2003. Particle-based fluid simulation for interactive applications.. In Symposium on Computer animation. 154–159.Google Scholar
    36. Kentaro Nagasawa, Takayuki Suzuki, Ryohei Seto, Masato Okada, and Yonghao Yue. 2019. Mixing Sauces: A Viscosity Blending Model for Shear Thinning Fluids. ACM Trans. Graph. 38, 4, Article 95 (July 2019), 17 pages.Google ScholarDigital Library
    37. Michael B. Nielsen and Ole Osterby. 2013. A Two-continua Approach to Eulerian Simulation of Water Spray. ACM Trans. Graph. 32, 4, Article 67 (July 2013), 10 pages.Google ScholarDigital Library
    38. S. Patkar and P. Chaudhuri. 2013. Wetting of Porous Solids. IEEE Transactions on Visualization and Computer Graphics 19, 9 (2013), 1592–1604.Google ScholarDigital Library
    39. Andreas Peer, Christoph Gissler, Stefan Band, and Matthias Teschner. 2018. An Implicit SPH Formulation for Incompressible Linearly Elastic Solids. Computer Graphics Forum 37, 6 (2018), 135–148.Google ScholarCross Ref
    40. Bo Ren, Chenfeng Li, Xiao Yan, Ming C. Lin, Javier Bonet, and Shi-Min Hu. 2014. Multiple-Fluid SPH Simulation Using a Mixture Model. ACM Trans. Graph. 33, 5, Article 171 (Sept. 2014), 11 pages.Google ScholarDigital Library
    41. Bo Ren, Xu-Yun Yang, Ming Lin, Nils Thuerey, Matthias Teschner, and Chen-Feng Li. 2018a. Visual Simulation of Multiple Fluids in Computer Graphics: A State-of-the-Art Report. Journal of Computer Science and Technology 33 (05 2018), 431–451.Google Scholar
    42. Bo Ren, Tailing Yuan, Chenfeng Li, Kun Xu, and Shi-min Hu. 2018b. Real-Time High-Fidelity Surface Flow Simulation. IEEE Transactions on Visualization and Computer Graphics 24, 8 (2018), 2411–2423.Google ScholarCross Ref
    43. Witawat Rungjiratananon, Zoltan Szego, Yoshihiro Kanamori, and Tomoyuki Nishita. 2008. Real-time Animation of Sand-Water Interaction. Computer Graphics Forum 27, 7 (2008), 1887–1893.Google ScholarCross Ref
    44. B. Solenthaler and R. Pajarola. 2009. Predictive-corrective Incompressible SPH. ACM Trans. Graph. 28, 3, Article 40 (July 2009), 6 pages.Google ScholarDigital Library
    45. Andre Pradhana Tampubolon, Theodore Gast, Gergely Klár, Chuyuan Fu, Joseph Teran, Chenfanfu Jiang, and Ken Museth. 2017. Multi-Species Simulation of Porous Sand and Water Mixtures. ACM Trans. Graph. 36, 4, Article 105 (July 2017), 11 pages.Google ScholarDigital Library
    46. Kiwon Um, Tae-Yong Kim, Youngdon Kwon, and JungHyun Han. 2013. Porous deformable shell simulation with surface water flow and saturation. Computer Animation and Virtual Worlds 24, 3-4 (2013), 247–254.Google ScholarCross Ref
    47. Yu-Shu Wu, Lehua Pan, and Karsten Pruess. 2004. A physically based approach for modeling multiphase fracture-matrix interaction in fractured porous media. Advances in Water Resources 27, 9 (2004), 875–887.Google ScholarCross Ref
    48. Xiao Yan, Yun-Tao Jiang, Chen-Feng Li, Ralph R. Martin, and Shi-Min Hu. 2016. Multiphase SPH Simulation for Interactive Fluids and Solids. ACM Trans. Graph. 35, 4, Article 79 (July 2016), 11 pages.Google ScholarDigital Library
    49. Xiao Yan, C-F Li, X-S Chen, and S-M Hu. 2018. MPM simulation of interacting fluids and solids. 37, 8 (2018), 183–193.Google Scholar
    50. Tao Yang, Jian Chang, Ming C. Lin, Ralph R. Martin, Jian J. Zhang, and Shi-Min Hu. 2017. A Unified Particle System Framework for Multi-Phase, Multi-Material Visual Simulations. ACM Trans. Graph. 36, 6, Article 224 (Nov. 2017), 13 pages.Google Scholar
    51. Tao Yang, Jian Chang, Bo Ren, Ming C. Lin, Jian Jun Zhang, and Shi-Min Hu. 2015. Fast Multiple-fluid Simulation Using Helmholtz Free Energy. ACM Trans. Graph. 34, 6, Article 201 (Oct. 2015), 11 pages.Google ScholarDigital Library
    52. Yi Zheng, Lei Ma, Yanyun Chen, Guangzheng Fei, Bin Sheng, and Enhua Wu. 2020. Simulation of multi-solvent stains on textile. The Visual Computer (07 2020).Google Scholar

ACM Digital Library Publication:

Overview Page: