“Unbiased inverse volume rendering with differential trackers” by Nimier-David, Müller, Keller and Jakob
Conference:
Type(s):
Title:
- Unbiased inverse volume rendering with differential trackers
Presenter(s)/Author(s):
Abstract:
Volumetric representations are popular in inverse rendering because they have a simple parameterization, are smoothly varying, and transparently handle topology changes. However, incorporating the full volumetric transport of light is costly and challenging, often leading practitioners to implement simplified models, such as purely emissive and absorbing volumes with “baked” lighting. One such challenge is the efficient estimation of the gradients of the volume’s appearance with respect to its scattering and absorption parameters. We show that the straightforward approach—differentiating a volumetric free-flight sampler—can lead to biased and high-variance gradients, hindering optimization. Instead, we propose using a new sampling strategy: differential ratio tracking, which is unbiased, yields low-variance gradients, and runs in linear time. Differential ratio tracking combines ratio tracking and reservoir sampling to estimate gradients by sampling distances proportional to the unweighted transmittance rather than the usual extinction-weighted transmittance. In addition, we observe local minima when optimizing scattering parameters to reproduce dense volumes or surfaces. We show that these local minima can be overcome by bootstrapping the optimization from nonphysical emissive volumes that are easily optimized.
References:
1. Dejan Azinović, Tzu-Mao Li, Anton Kaplanyan, and Matthias Nießner. 2019. Inverse Path Tracing for Joint Material and Lighting Estimation. In Proceedings of Computer Vision and Pattern Recognition (CVPR), IEEE.Google ScholarCross Ref
2. Sai Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased Warped-Area Sampling for Differentiable Rendering. ACM Trans. Graph. 39, 6 (2020), 245:1–245:18.Google ScholarDigital Library
3. Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan. 2021a. Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. arXiv (2021). https://jonbarron.info/mipnerf/Google Scholar
4. Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. 2021b. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. arXiv:2111.12077 (Nov. 2021).Google Scholar
5. Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy, David Kriegman, and Ravi Ramamoorthi. 2020. Neural Reflectance Fields for Appearance Acquisition.Google Scholar
6. Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wojciech Jarosz. 2020. Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 39, 4 (July 2020). Google ScholarCross Ref
7. Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Barron, Ce Liu, and Hendrik P.A. Lensch. 2021. NeRD: Neural Reflectance Decomposition from Image Collections. In IEEE International Conference on Computer Vision (ICCV).Google Scholar
8. J. C. Butcher and H. Messel. 1958. Electron Number Distribution in Electron-Photon Showers. Phys. Rev. 112 (Dec 1958), 2096–2106. Issue 6. Google ScholarCross Ref
9. Min-Te Chao. 1982. A general purpose unequal probability sampling plan. Biometrika 69, 3 (12 1982), 653–656. arXiv:https://academic.oup.com/biomet/article-pdf/69/3/653/591311/69-3-653.pdf Google ScholarCross Ref
10. Chengqian Che, Fujun Luan, Shuang Zhao, Kavita Bala, and Ioannis Gkioulekas. 2020. Towards Learning-based Inverse Subsurface Scattering. 1–12. Google ScholarCross Ref
11. Frank Dellaert and Lin Yen-Chen. 2021. Neural Volume Rendering: NeRF And Beyond.Google Scholar
12. Mathieu Galtier, Stéphane Blanco, Cyril Caliot, Christophe Coustet, Jérémi Dauchet, Mouna El Hafi, Vincent Eymet, Richard Fournier, Jacques Gautrais, Anaïs Khuong, et al. 2013. Integral formulation of null-collision Monte Carlo algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer 125 (2013).Google Scholar
13. Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien Valentin. 2021. FastNeRF: High-Fidelity Neural Rendering at 200FPS. arXiv:2103.10380 (March 2021).Google Scholar
14. Iliyan Georgiev, Zackary Misso, Toshiya Hachisuka, Derek Nowrouzezahrai, Jaroslav Křivánek, and Wojciech Jarosz. 2019. Integral Formulations of Volumetric Transmittance. ACM Trans. Graph. 38, 6, Article 154 (nov 2019), 17 pages. Google ScholarDigital Library
15. Adam Geva, Yoav Y Schechner, Yonatan Chernyak, and Rajiv Gupta. 2018. X-ray computed tomography through scatter. In Proceedings of The European Conference on Computer Vision (ECCV). 34–50.Google ScholarDigital Library
16. Ioannis Gkioulekas, Anat Levin, and Todd Zickler. 2016. An evaluation of computational imaging techniques for heterogeneous inverse scattering. In European Conference on Computer Vision. Springer, 685–701.Google ScholarCross Ref
17. Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. 2013. Inverse volume rendering with material dictionaries. ACM Transactions on Graphics (TOG) 32, 6 (2013), 1–13.Google ScholarDigital Library
18. A.W. Harzing. 2007. Publish or Perish. https://harzing.com/resources/publish-or-perish.Google Scholar
19. Jon Hasselgren, Jacob Munkberg, Jaakko Lehtinen, Miika Aittala, and Samuli Laine. 2021. Appearance-Driven Automatic 3D Model Simplification. In Eurographics Symposium on Rendering.Google Scholar
20. Hailin Jin, Stefano Soatto, and Anthony J. Yezzi. 2005. Multi-view stereo reconstruction of dense shape and complex appearance. International Journal of Computer Vision 63, 3 (2005), 175–189.Google ScholarDigital Library
21. James T. Kajiya and Brian P Von Herzen. 1984. Ray Tracing Volume Densities. SIG-GRAPH Comput. Graph. 18, 3 (jan 1984), 165–174. Google ScholarDigital Library
22. Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2017. Neural 3D Mesh Renderer. CoRR abs/1711.07566 (2017). arXiv:1711.07566 http://arxiv.org/abs/1711.07566Google Scholar
23. Markus Kettunen, Eugene D’Eon, Jacopo Pantaleoni, and Jan Novák. 2021. An Unbiased Ray-Marching Transmittance Estimator. ACM Trans. Graph. 40, 4, Article 137 (jul 2021), 20 pages. Google ScholarDigital Library
24. Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner. 2016. Matching Real Fabrics with Micro-Appearance Models. ACM Trans. Graph. 35, 1, Article 1 (dec 2016), 26 pages. Google ScholarDigital Library
25. Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).Google Scholar
26. Oliver Klehm, Ivo Ihrke, Hans-Peter Seidel, and Elmar Eisemann. 2014. Property and Lighting Manipulations for Static Volume Stylization Using a Painting Metaphor. IEEE Transactions on Visualization and Computer Graphics 20, 7 (2014), 983–995. Google ScholarDigital Library
27. Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. 2017. Spectral and Decomposition Tracking for Rendering Heterogeneous Volumes. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2017) 36, 4, Article 111 (2017), 111:1–111:16 pages. Google ScholarDigital Library
28. Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. 2020. Modular primitives for high-performance differentiable rendering. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1–14.Google ScholarDigital Library
29. Aldo Laurentini. 1994. The Visual Hull Concept for Silhouette-Based Image Understanding. IEEE Trans. Pattern Anal. Mach. Intell. 16, 2 (feb 1994), 150–162. Google ScholarDigital Library
30. Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable Monte Carlo Ray Tracing through Edge Sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 37, 6 (2018), 222:1–222:11.Google Scholar
31. Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020. Neural Sparse Voxel Fields. NeurIPS (2020). https://lingjie0206.github.io/papers/NSVF/Google Scholar
32. Shichen Liu, Weikai Chen, Tianye Li, and Hao Li. 2019. Soft Rasterizer: Differentiable Rendering for Unsupervised Single-View Mesh Reconstruction. CoRR abs/1901.05567 (2019). arXiv:1901.05567 http://arxiv.org/abs/1901.05567Google Scholar
33. Tamar Loeub, Aviad Levis, Vadim Holodovsky, and Yoav Y Schechner. 2020. Monotonicity prior for cloud tomography. In Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16. Springer, 283–299.Google Scholar
34. Matthew M. Loper and Michael J. Black. 2014. OpenDR: An approximate differentiable renderer. In European Conference on Computer Vision. Springer.Google Scholar
35. Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duckworth. 2021. NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections. In CVPR.Google Scholar
36. Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla, Pratul Srinivasan, and Jonathan T. Barron. 2021. NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images. arXiv:2111.13679 (Nov. 2021).Google Scholar
37. Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In ECCV.Google Scholar
38. Bailey Miller, Iliyan Georgiev, and Wojciech Jarosz. 2019. A Null-Scattering Path Integral Formulation of Light Transport. ACM Trans. Graph. 38, 4, Article 44 (jul 2019), 13 pages. Google ScholarDigital Library
39. Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding. arXiv:2201.05989 (Jan. 2022).Google Scholar
40. Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex Evans, Thomas Müller, and Sanja Fidler. 2021. Extracting Triangular 3D Models, Materials, and Lighting From Images. arXiv:2111.12503 (2021).Google Scholar
41. Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz, and Wenzel Jakob. 2020. Radiative Backpropagation: An Adjoint Method for Lightning-Fast Differentiable Rendering. Transactions on Graphics (Proceedings of SIGGRAPH) 39, 4 (July 2020). Google ScholarDigital Library
42. Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2: A Retargetable Forward and Inverse Renderer. Transactions on Graphics (Proceedings of SIGGRAPH Asia) 38, 6 (Dec. 2019). Google ScholarDigital Library
43. Thomas Klaus Nindel, Tomáš Iser, Tobias Rittig, Alexander Wilkie, and Jaroslav Křivánek. 2021. A Gradient-Based Framework for 3D Print Appearance Optimization. ACM Trans. Graph. 40, 4, Article 178 (July 2021), 15 pages. Google ScholarDigital Library
44. Jan Novák, Andrew Selle, and Wojciech Jarosz. 2014. Residual Ratio Tracking for Estimating Attenuation in Participating Media. ACM Trans. Graph. 33, 6, Article 179 (nov 2014), 11 pages. Google ScholarDigital Library
45. Felix Petersen, Amit H. Bermano, Oliver Deussen, and Daniel Cohen-Or. 2019. Pix2Vex: Image-to-Geometry Reconstruction using a Smooth Differentiable Renderer. CoRR abs/1903.11149 (2019). arXiv:1903.11149 http://arxiv.org/abs/1903.11149Google Scholar
46. Helge Rhodin, Nadia Robertini, Christian Richardt, Hans-Peter Seidel, and Christian Theobalt. 2015. A Versatile Scene Model with Differentiable Visibility Applied to Generative Pose Estimation. In Proceedings of ICCV 2015.Google ScholarDigital Library
47. Roi Ronen, Yoav Y. Schechner, and Eshkol Eytan. 2021. 4D Cloud Scattering Tomography. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 5520–5529.Google ScholarCross Ref
48. Johannes Lutz Schönberger and Jan-Michael Frahm. 2016. Structure-from-Motion Revisited. In Conference on Computer Vision and Pattern Recognition (CVPR).Google Scholar
49. Yael Sde-Chen, Yoav Y. Schechner, Vadim Holodovsky, and Eshkol Eytan. 2021. 3DeepCT: Learning volumetric scattering tomography of clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 5671–5682.Google ScholarCross Ref
50. Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Mildenhall, and Jonathan T. Barron. 2021. NeRV: Neural Reflectance and Visibility Fields for Relighting and View Synthesis. In CVPR.Google Scholar
51. Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2021a. Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction. arXiv:2111.11215 (Nov. 2021).Google Scholar
52. Qilin Sun, Congli Wang, Fu Qiang, Dun Xiong, and Heidrich Wolfgang. 2021b. End-to-end complex lens design with differentiable ray tracing. ACM Transactions on Graphics 40, 4 (2021), 1–13.Google ScholarDigital Library
53. Jean-Marc Tregan, Stéphane Blanco, Jérémi Dauchet, Mouna El Hafi, Richard Fournier, L. Ibarrart, P. Lapeyre, and Najda Villefranque. 2020. Convergence issues in derivatives of Monte Carlo null-collision integral formulations: a solution. J. Comput. Phys. 413 (2020), 109463.Google ScholarCross Ref
54. Chia-Yin Tsai, Aswin C. Sankaranarayanan, and Ioannis Gkioulekas. 2019. Beyond Volumetric Albedo-A Surface Optimization Framework for Non-Line-Of-Sight Imaging. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1545–1555.Google ScholarCross Ref
55. Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques for Monte Carlo Rendering. 419–428. Google ScholarDigital Library
56. Delio Vicini, Wenzel Jakob, and Anton Kaplanyan. 2021a. A non-exponential transmittance model for volumetric scene representations. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–16.Google ScholarDigital Library
57. Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2021b. Path Replay Backpropagation: Differentiating Light Paths using Constant Memory and Linear Time. Transactions on Graphics (Proceedings of SIGGRAPH) 40, 4 (Aug. 2021), 108:1–108:14. Google ScholarDigital Library
58. E. Woodcock, T. Murphy, P. Hemmings, and S. Longworth. 1965. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. In Proceedings of the Conference on Applications of Computing Methods to Reactor Problems. Argonne National Laboratory, 557.Google Scholar
59. Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. 2021. Volume rendering of neural implicit surfaces. Advances in Neural Information Processing Systems 34 (2021).Google Scholar
60. Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo Kanazawa. 2021a. Plenoxels: Radiance Fields without Neural Networks. arXiv:2112.05131 (Dec. 2021).Google Scholar
61. Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021b. PlenOctrees for Real-time Rendering of Neural Radiance Fields. In ICCV.Google Scholar
62. Tizian Zeltner, Sébastien Speierer, Iliyan Georgiev, and Wenzel Jakob. 2021. Monte Carlo Estimators for Differential Light Transport. Transactions on Graphics (Proceedings of SIGGRAPH) 40, 4 (Aug. 2021). Google ScholarDigital Library
63. Cheng Zhang, Zhao Dong, Michael Doggett, and Shuang Zhao. 2021a. Antithetic sampling for Monte Carlo differentiable rendering. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–12.Google ScholarDigital Library
64. Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020. Path-Space Differentiable Rendering. ACM Trans. Graph. 39, 4 (2020), 143:1–143:19.Google ScholarDigital Library
65. Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, and Shuang Zhao. 2019. A differential theory of radiative transfer. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1–16.Google ScholarDigital Library
66. Cheng Zhang, Zihan Yu, and Shuang Zhao. 2021b. Path-Space Differentiable Rendering of Participating Media. ACM Trans. Graph. 40, 4 (2021), 76:1–76:15.Google ScholarDigital Library
67. Shuang Zhao, Ravi Ramamoorthi, and Kavita Bala. 2014. High-order similarity relations in radiative transfer. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1–12.Google ScholarDigital Library
68. Shuang Zhao, Lifan Wu, Frédo Durand, and Ravi Ramamoorthi. 2016. Downsampling Scattering Parameters for Rendering Anisotropic Media. ACM Trans. Graph. 35, 6, Article 166 (nov 2016), 11 pages. Google ScholarDigital Library
69. Quan Zheng, Gurprit Singh, and Hans-Peter Seidel. 2021. Neural Relightable Participating Media Rendering. Advances in Neural Information Processing Systems 34 (2021).Google Scholar