“Toward animating water with complex acoustic bubbles”

  • ©Timothy R. Langlois, Changxi Zheng, and Doug L. James




    Toward animating water with complex acoustic bubbles

Session/Category Title: SOUND, FLUIDS & BOUNDARIES




    This paper explores methods for synthesizing physics-based bubble sounds directly from two-phase incompressible simulations of bubbly water flows. By tracking fluid-air interface geometry, we identify bubble geometry and topological changes due to splitting, merging and popping. A novel capacitance-based method is proposed that can estimate volume-mode bubble frequency changes due to bubble size, shape, and proximity to solid and air interfaces. Our acoustic transfer model is able to capture cavity resonance effects due to near-field geometry, and we also propose a fast precomputed bubble-plane model for cheap transfer evaluation. In addition, we consider a bubble forcing model that better accounts for bubble entrainment, splitting, and merging events, as well as a Helmholtz resonator model for bubble popping sounds. To overcome frequency bandwidth limitations associated with coarse resolution fluid grids, we simulate micro-bubbles in the audio domain using a power-law model of bubble populations. Finally, we present several detailed examples of audiovisual water simulations and physical experiments to validate our frequency model.


    1. Ando, R., Thuerey, N., and Wojtan, C. 2015. A stream function solver for liquid simulations. ACM Transactions on Graphics (TOG) 34, 4, 53. Google ScholarDigital Library
    2. Banerjee, P. K., and Butterfield, R. 1981. Boundary element methods in engineering science, vol. 17. McGraw-Hill London.Google Scholar
    3. Bigg, G. R., Jickells, T. D., Liss, P. S., and Osborn, T. J. 2003. The role of the oceans in climate. International Journal of Climatology 23, 10, 1127–1159.Google ScholarCross Ref
    4. Boyd, L., and Bridson, R. 2012. MultiFLIP for energetic two-phase fluid simulation. ACM Transactions on Graphics (TOG) 31, 2, 16. Google ScholarDigital Library
    5. Bragg, S. W. H. 1920. The World of Sound. G. Bell and Sons Ltd.Google Scholar
    6. Bridson, R. 2008. Fluid simulation for computer graphics. CRC Press. Google ScholarDigital Library
    7. Busaryev, O., Dey, T. K., Wang, H., and Ren, Z. 2012. Animating bubble interactions in a liquid foam. ACM Transactions on Graphics (TOG) 31, 4, 63. Google ScholarDigital Library
    8. Chicharro, R., and Vazquez, a. 2014. The acoustic signature of gas bubbles generated in a liquid cross-flow. Experimental Thermal and Fluid Science 55, 221–227.Google ScholarCross Ref
    9. Czerski, H., and Deane, G. B. 2010. Contributions to the acoustic excitation of bubbles released from a nozzle. The Journal of the Acoustical Society of America 128, 5, 2625–2634.Google ScholarCross Ref
    10. Czerski, H., and Deane, G. B. 2011. The effect of coupling on bubble fragmentation acoustics. The Journal of the Acoustical Society of America 129, 1, 74–84.Google ScholarCross Ref
    11. Czerski, H. 2011. A candidate mechanism for exciting sound during bubble coalescence. The Journal of the Acoustical Society of America 129, 3, EL83–EL88.Google ScholarCross Ref
    12. Da, F., Batty, C., Wojtan, C., and Grinspun, E. 2015. Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams. ACM Transactions on Graphics (TOG) 34, 4, 149. Google ScholarDigital Library
    13. Deane, G. B., and Czerski, H. 2008. A mechanism stimulating sound production from air bubbles released from a nozzle. The Journal of the Acoustical Society of America 123, 6, EL126–EL132.Google ScholarCross Ref
    14. Deane, G. B., and Stokes, M. D. 2002. Scale dependence of bubble creation mechanisms in breaking waves. Nature 418, 6900, 839–844.Google Scholar
    15. Deane, G. B., and Stokes, M. D. 2010. Model calculations of the underwater noise of breaking waves and comparison with experiment. The Journal of the Acoustical Society of America 127, 6, 3394–3410.Google ScholarCross Ref
    16. Deane, G. B. 2013. Determining the bubble cap film thickness of bursting bubbles from their acoustic emissions. The Journal of the Acoustical Society of America 133, February 2013, EL69–75.Google ScholarCross Ref
    17. Ding, L., and Farmer, D. M. 1994. Observations of breaking surface wave statistics. Journal of Physical Oceanography 24, 6, 1368–1387.Google ScholarCross Ref
    18. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Transactions on Graphics (TOG) 21, 3, 736–744. Google ScholarDigital Library
    19. Garland, M., and Heckbert, P. S. 1997. Surface simplification using quadric error metrics. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH ’97, 209–216. Google ScholarDigital Library
    20. Hager, W. W. 1989. Updating the inverse of a matrix. SIAM review 31, 2, 221–239. Google ScholarDigital Library
    21. Hong, J.-M., and Kim, C.-H. 2003. Animation of bubbles in liquid. In Computer Graphics Forum, vol. 22, Wiley Online Library, 253–262.Google Scholar
    22. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Transactions on Graphics (TOG) 24, 3, 915–920. Google ScholarDigital Library
    23. Howe, M. S., and Hagen, N. A. A. 2011. On the impact noise of a drop falling on water. Journal of Sound and Vibration 330, 4, 625–635.Google ScholarCross Ref
    24. Howe, M. S. 1998. Acoustics of Fluid-Structure Interatctions. Cambridge Press.Google Scholar
    25. Howe, M. S. 2002. Theory of Vortex Sound. Cambridge Press.Google Scholar
    26. Kim, B., Liu, Y., Llamas, I., Jiao, X., and Rossignac, J. 2007. Simulation of bubbles in foam with the volume control method. In ACM Transactions on Graphics (TOG), vol. 26, ACM, 98. Google ScholarDigital Library
    27. Klusek, Z., and Lisimenka, A. 2013. Acoustic noise generation under plunging breaking waves. Oceanologia 55, 4, 809–836.Google ScholarCross Ref
    28. Lamb, H. 1932. Hydrodynamics. Cambridge University Press.Google Scholar
    29. Leighton, T., Finfer, D., Grover, E., and White, P. 2007. An acoustical hypothesis for the spiral bubble nets of humpback whales and the implications for whale feeding. Acoustic Bulletin 22, 1, 17–21.Google Scholar
    30. Leighton, T. G. 1994. The Acoustic Bubble. Academic Press.Google Scholar
    31. Lewiner, T., Lopes, H., Vieira, A. W., and Tavares, G. 2003. Efficient implementation of marching cubes cases with topological guarantees. Journal of Graphics Tools 8, 2 (december), 1–15.Google ScholarCross Ref
    32. Lhuissier, H., and Villermaux, E. 2012. Bursting bubble aerosols. Journal of Fluid Mechanics 696 (4), 5–44.Google ScholarCross Ref
    33. Longuet-Higgins, M. S. 1989. Monopole emission of sound by asymmetric bubble oscillations. Part 1. Normal modes. Journal of Fluid Mechanics 201, 525–541.Google ScholarCross Ref
    34. Longuet-Higgins, M. S. 1989. Monopole emission of sound by asymmetric bubble oscillations. Part 2. An initial-value problem. Journal of Fluid Mechanics 201, 543–565.Google ScholarCross Ref
    35. Longuet-Higgins, M. S. 1990. An analytical model of sound production by raindrops. Journal of Fluid Mechanics 214, 395–410.Google ScholarCross Ref
    36. Longuet-Higgins, M. S. 1991. Resonance in nonlinear bubble oscillations. Journal of Fluid Mechanics 224, 531.Google ScholarCross Ref
    37. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. In ACM Transactions on Graphics (TOG), vol. 25, ACM, 812–819. Google ScholarDigital Library
    38. Means, S. L., and Heitmeyer, R. M. 2002. Surf-generated noise signatures: a comparison of plunging and spilling breakers. The Journal of the Acoustical Society of America 112, 2, 481–488.Google ScholarCross Ref
    39. Medwin, H., and Beaky, M. M. 1989. Bubble sources of the Knudsen sea noise spectra. The Journal of the Acoustical Society of America 86, 3, 1124–1130.Google ScholarCross Ref
    40. Minnaert, M. 1933. On musical air-bubbles and the sounds of running water. Philosophical Magazine 16, 104, 235–248.Google Scholar
    41. Moss, W., Yeh, H., Hong, J.-M., Lin, M. C., and Manocha, D. 2010. Sounding liquids: Automatic sound synthesis from fluid simulation. ACM Trans. Graph. 29, 3 (July), 21:1–21:13. Google ScholarDigital Library
    42. Nystuen, J. A. 1986. Rainfall measurements using underwater ambient noise. The Journal of the Acoustical Society of America 79, 4, 972–982.Google ScholarCross Ref
    43. Osher, S., and Fedkiw, R. 2006. Level set methods and dynamic implicit surfaces, vol. 153. Springer Science & Business Media.Google Scholar
    44. Popinet, S. 2003. Gerris: a tree-based adaptive solver for the incompressible euler equations in complex geometries. Journal of Computational Physics 190, 2, 572–600. Google ScholarDigital Library
    45. Popinet, S. 2009. An accurate adaptive solver for surface-tension-driven interfacial flows. Journal of Computational Physics 228, 16, 5838–5866. Google ScholarDigital Library
    46. Prosperetti, A. 1988. Bubble dynamics in oceanic ambient noise. In Sea Surface Sound, B. Kerman, Ed., vol. 238 of NATO ASI Series. Springer Netherlands, 151–171.Google Scholar
    47. Prosperetti, A. 1988. Bubble-related ambient noise in the ocean. The Journal of the Acoustical Society of America 84, 3, 1042–1054.Google ScholarCross Ref
    48. Pumphery, H., Crum, L., and Bjørnø, L. 1989. Underwater sound produced by individual drop impacts and rainfall. J. Acoust. Soc. Am. 85, 1518–1526.Google ScholarCross Ref
    49. Pumphrey, H., and Ffowcs Williams, J. 1990. Bubbles as sources of ambient noise. IEEE Journal of Oceanic Engineering 15, 4, 268–274.Google ScholarCross Ref
    50. Rayleigh, L. 1917. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Philosophical Magazine Series 6 34, 200, 94–98.Google Scholar
    51. Smigaj, W., Arridge, S., Betcke, T., Phillips, J., and Schweiger, M. 2012. Solving boundary integral problems with bem++. ACM Transactions on Mathematical Software. Google ScholarDigital Library
    52. Spiel, D. E. 1992. Acoustical measurements of air bubbles bursting at a water surface: Bursting bubbles as helmholtz resonators. Journal of Geophysical Research: Oceans (1978–2012) 97, C7, 11443–11452.Google Scholar
    53. Spratt, K. S., Lee, K. M., Wilson, P. S., and Wochner, M. S. 2015. On the resonance frequency of an ideal arbitrarily-shaped bubble. Proceedings of Meetings on Acoustics 20, 1.Google Scholar
    54. Stam, J. 1999. Stable fluids. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., 121–128. Google ScholarDigital Library
    55. Strasberg, M. 1953. The pulsation frequency of nonspherical gas bubbles in liquids. The Journal of the Acoustical Society of America 25, 3, 536–537.Google ScholarCross Ref
    56. van den Doel, K. 2005. Physically based models for liquid sounds. ACM Transactions on Applied Perception 2, 4 (Oct.), 534–546. Google ScholarDigital Library
    57. Wilson, J. D., and Makris, N. C. 2008. Quantifying hurricane destructive power, wind speed, and air-sea material exchange with natural undersea sound. Geophysical Research Letters 35, 10.Google ScholarCross Ref
    58. Zheng, C., and James, D. L. 2009. Harmonic fluids. ACM Trans. Graph. 28, 3 (Aug.), 37:1–37:12. Google ScholarDigital Library
    59. Zheng, C., and James, D. L. 2010. Rigid-Body Fracture Sound with Precomputed Soundbanks. ACM Transactions on Graphics 29, 4 (July), 69:1–69:13. Google ScholarDigital Library
    60. Zheng, W., Yong, J.-H., and Paul, J.-C. 2009. Simulation of bubbles. Graphical Models 71, 6, 229–239. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: