“Toward a Perceptual Space for Gloss” by Wills, Agarwal, Kriegman and Belongie

  • ©Josh Wills, Sameer Agarwal, David J. Kriegman, and Serge Belongie

Conference:


Type(s):


Title:

    Toward a Perceptual Space for Gloss

Presenter(s)/Author(s):



Abstract:


    We design and implement a comprehensive study of the perception of gloss. This is the largest study of its kind to date, and the first to use real material measurements. In addition, we develop a novel multi-dimensional scaling (MDS) algorithm for analyzing pairwise comparisons. The data from the psychophysics study and the MDS algorithm is used to construct a low dimensional perceptual embedding of these bidirectional reflectance distribution functions (BRDFs). The embedding is validated by correlating it with nine gloss dimensions, fitted parameters of seven analytical BRDF models, and a perceptual parameterization of Ward’s model. We also introduce a novel perceptual interpolation scheme that uses the embedding to provide the user with an intuitive interface for navigating the space of gloss and constructing new materials.

References:


    1. Adelson, E. H. 2001. On seeing stuff: The perception of materials by humans and machines. In Proceedings of the International Conference on Human Vision and Electronic Imaging (SPIE). Vol. 4299. 1–12.
    2. Agarwal, S., Ramamoorthi, R., Belongie, S., and Jensen, H. W. 2003. Structured importance sampling of environment maps. ACM Trans. Graph. 22, 3, 605–612. 
    3. Agarwal, S., Wills, J., Cayton, L., Lanckriet, G., Kriegman, D., and Cayton, L. 2007. Generalized non-metric multidimensional scaling. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS).
    4. Aida, T. 1997. Glossiness of colored papers and its application to specular glossiness measuring instruments. Syst. Comput. Japan 28, 1, 95–112.
    5. Ashikhmin, M., Premoze, S., and Shirley, P. 2000. A microfacet-based brdf generator. In Proceedings of the International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH). 65–74. 
    6. ASTM. 1999. Standard Test Method for Specular Gloss (E523-89(1999)). ASTM International.
    7. ASTM. 2003. Standard Practice for Establishing COLOR and GLOSS TOLERANCEs (D3134-97(2003)). ASTM International.
    8. ASTM. 2004. Standard Test Method for 45-deg Specular Gloss of Ceramic Materials (ASTM C346-87(2004)). ASTM International.
    9. ASTM. 2005a. Standard Termninology of Appearance (E284-05a). ASTM International.
    10. ASTM. 2005b. Standard Test Methods for Measurement of Gloss and High-Gloss Surfaces by Abridged Goniophotometry (E430-05). ASTM International.
    11. Ben-Artzi, A., Overbeck, R., and Ramamoorthi, R. 2006. Real-time BRDF editing in complex lighting. In ACM Trans. Graph. 25, 3, 945–954. 
    12. Borg, I. and Groenen, P. 2005. Modern Multidimensional Scaling: Theory and Applications. Springer Verlag.
    13. Cook, R. L. and Torrance, K. E. 1981. A reflectance model for computer graphics. Comput. Graph. (SIGGRAPH) 15, 4, 187–196. 
    14. Cox, T. and Cox, M. 2000. Multidimensional Scaling. Chapman&Hall/CRC.
    15. David, H. A. 1988. The Method of Paired Comparisons 2nd Ed. Chapman and Hall, London.
    16. Dumont, R., Pellacini, F., and Ferwerda, J. 2003. Perceptually-driven decision theory for interactive realistic rendering. ACM Trans. Graph. 22, 2, 152–181. 
    17. Fazel, M., Hindi, H., and Boyd, S. 2004. Rank minimization and applications in system theory. In Proceedings of the Americal Control Conference.
    18. Fleming, R. W., Dror, R. O., and Adelson, E. H. 2003. Real-world illumination and the perception of surface reflectance properties. J. Vis. 3, 5, 347–368.
    19. Fleming, R. W., Jensen, H. W., and Bulthoff, H. H. 2004a. Perceiving translucent materials. In Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization (APGV). 127–134. 
    20. Fleming, R. W., Torralba, A., and Adelson, E. H. 2004b. Specular reflections and the perception of shape. J. Vis. 4, 9, 798–820.
    21. Gibson, S. and Hubbold, R. 1997. Perceptually-driven radiosity. Comput. Graph. Forum 16, 2, 129–141.
    22. Hartung, B. and Kersten, D. 2002. Distinguishing shiny from matte. J. Vis. 2, 7, 551.
    23. Hastie, T., Tibshirani, R., and Friedman, J. 2001. The Elements of Statistical Learning. Springer Verlag.
    24. He, X. D., Torrance, K. E., Sillion, F. X., and Greenberg, D. P. 1991. A comprehensive physical model for light reflection. Comput. Graph. (SIGGRAPH) 25, 4, 175–186. 
    25. Hunter, R. S. and Harold, R. W. 1987. The Measurement of Appearance. Wiley.
    26. Kendall, M. and Gibbons, K. D. 1990. Rank Correlation Methods. Oxford University Press, UK.
    27. Knill, D. and Kersten, D. 1991. Apparent surface curvature affects lightness perception. Nature 351, 228–230.
    28. Kruskal, J. B. 1964a. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27.
    29. Kruskal, J. B. 1964b. Nonmetric multidimensional scaling: A numerical method. Psychometrika 29, 115–129.
    30. Ledda, P., Chalmers, A., Troscianko, T., and Seetzen, H. 2005. Evaluation of tone mapping operators using a high dynamic range display. In ACM Trans. Graph. 24, 3, 640–648. 
    31. Luebke, D. and Hallen, B. 2001. Perceptually driven simplification for interactive rendering. In Proceedings of the Eurographics Workshop on Rendering. 
    32. Maloney, L. T. and Yang, J. N. 2003. Maximum likelihood difference scaling. J. Vis. 3, 8 (10), 573–585.
    33. Marschner, S. R., Westin, S. H., Lafortune, E. P. F., and Torrance, K. E. 2000. Image–based bidirectional reflectance distribution function measurement. Applied Optics 39, 16.
    34. Matusik, W. 2003. A data-driven reflectance model. Ph.D. thesis, MIT. 
    35. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003a. Efficient isotropic BRDF measurement. In Proceedings of the 14th Eurographics Workshop on Rendering. Eurographics Association. 241–247. 
    36. Matusik, W., Pfister, H., Brand, M., and McMillian, L. 2003b. A data-driven reflectance model. In ACM Trans. Graph. 22, 3, 759–769. 
    37. Myszkowski, K. 2002. Perception-based global illumination, rendering, and animation techniques. In Proceedings of the 18th Spring Conference on Computer Graphics (SCCG), A. Chalmers, Ed. 13–24. 
    38. Nesterov, Y. E. and Nemirousky, A. S 1994. Interior Point Polynomial Algorithms in Convex Programming: Theory and Algorithms. Siam.
    39. Ngan, A., Durand, F., and Matusik, W. 2005. Experimental analysis of BRDF models. In Proceedings of the Eurographics Symposium on Rendering. Eurographics Association. 117–226. 
    40. Ngan, A., Durand, F., and Matusik, W. 2006. Image-driven navigation of analytical BRDF models. In Proceedings of the 17th Eurographics Workshop on Rendering. 399–408. 
    41. Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. 1977. Geometric considerations and nomenclature for reflectance. Monograph 161, National Bureau of Standards.
    42. Obein, G., Knoblauch, K., and Vienot, F. 2004. Difference scaling of gloss: Nonlinearity, binocularity, and constancy. J. Vis. 4, 9 (8), 711–720.
    43. Okabe, A., Boots, B., and Sugihara, K. 1992. Spatial Tesselations: Concepts and Applications of Voronoi Daigrams. Wiley, New York. 
    44. Palmer, S. E. 1999. Vision Science: Photons to Phenomenology. MIT Press.
    45. Pellacini, F., Ferwerda, J. A., and Greenberg, D. P. 2000. Toward a psychophysically-based light reflection model for image synthesis. In Proceedings of SIGGRAPH. ACM Press, 55–64. 
    46. Ramanarayanan, G., Ferwerda, J., Walter, B., and Bala, K. 2007. Visual equivalence: Towards a new standard for image fidelity. In ACM SIGGRAPH Papers. ACM. 
    47. Schultz, M. and Joachims, T. 2003. Learning a distance metric from relative comparisons. In Proceedings of the Conference on Advance in Neural Information Processing Systems (NIPS).
    48. Shepard, R. 1962a. The analysis of proximities: Multidimensional scaling with an unknown distance function. I. Psychometrika 27, 2, 125–140.
    49. Shepard, R. 1962b. The analysis of proximities: Multidimensional scaling with an unknown distance function. II. Psychometrika 27, 219–246.
    50. Shimizu, C., Meyer, G. W., and Wingard, J. P. 2003. Interactive goniochromatic color design. In Proceedings of the Color Imaging Conference. 16–22.
    51. Stokes, W. A., Ferwerda, J. A., Walter, B., and Greenberg, D. P. 2004. Perceptual illumination components: A new approach to efficient, high quality global illumination rendering. In ACM Trans. Graph. 23, 3, 742–749. 
    52. Sturm, J. 1999. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Meth. Softw. 11-12, 625–653.
    53. Torrance, K. E. and Sparrow, E. M. 1967. Theory for off-specular reflection from roughened surfaces. J. Optic. Soc. Amer. 57, 1105–1114.
    54. Tumblin, J., Hodgins, J. K., and Guenter, B. K. 1999. Two methods for display of high contrast images. ACM Trans. Graph. 18, 1, 56–94. 
    55. Tumblin, J. and Rushmeier, H. E. 1993. Tone reproduction for realistic images. IEEE Comput. Graph. Appl. 13, 6, 42–48. 
    56. Turk, G. and Levoy, M. 1994. Zippered polygon meshes from range images. In Proceedings of SIGGRAPH ’94. 311–318. 
    57. Umeyama, S. 1991. Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern. Anal. Mech. Intell. 13, 4, 376–380. 
    58. Vandenberghe, L. and Boyd, S. 1996. Semidefinite programming. SIAM Rev. 38, 1, 49–95. 
    59. Vangorp, P., Laurijssen, J., and Dutré, P. 2007. The influence of shape on the perception of material reflectance. ACM Trans. Graph. 26, 3, 77. 
    60. Vapnik, V. 1998. Statistical Learning Theory. Wiley, New York.
    61. Ward, G. J. 1992. Measuring and modelling anisotropic reflection. Comput. Graph. (SIGGRAPH) 26, 2, 265–272. 
    62. Weinberger, K. Q., Sha, F., and Saul, L. K. 2004. Learning a kernel matrix for nonlinear dimensionality reduction. In Proceedings of the 21st International Conference on Machine Learning (ICML). 839–846. 
    63. Westlund, H. B. and Meyer, G. W. 2001. Applying appearance standards to light reflection models. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH). 501–510. 

ACM Digital Library Publication:



Overview Page: