“Topological design of sculptured surfaces” by Ferguson, Rockwood and Cox

  • ©Helaman Ferguson, Alyn P. Rockwood, and Jordan Cox

Conference:


Type:


Title:

    Topological design of sculptured surfaces

Presenter(s)/Author(s):



Abstract:


    No abstract available.

References:


    1. Bloor, M. I. G., Wilson, M. J., “Using Partial Differential Equations To Generate Free-Form Surfaces”, Computer-Aided Design, vo| 22, number 1, May 1990.
    2. Bloor, M. I. G., Wilson, M. J., “Generating N- sided Patches with Partial Differential Equations~, Computer Graphics International, Wyvil, B. (Editor), Springer-Verlag 1989.
    3. Cannon, L, “The Combinatorial Structure of Cocompact Discrete Hyperbolic Groups,~ Geometn’ae Dedicata, vol 16, 1984, 123-148.
    4. Cannon, J., Wagreich, P., “Growth Functions of Surface Groups”, to appear in Math. Annalen, 1992.
    5. Cox, 3., “Domain Composition Methods For Combining Geometric And Continuum Field Models”, PhD Thesis, Purdue University, West Lafayette, IN, Ikcember 1991.
    6. Cox, J., Anderson, D., C., “Single Model Formulations That Link Engineering Analysis With Geometric Modeling”, Product Modeling for Computer-Aided Design and Manufacturing, J. Turner, J. Pegna and M. Wozny (F.zlitors), Elsiver Science Publishers B. V., North-Holland, New York, 1991.
    7. Cox, J., Charlesworth, W., W., Anderson, D. C., “Domain Composition Methods For Associating Geometric Modeling With Finite Element Modeling”, Proceedings of the ACM/SIGGRAPH Symposium on Solid Modeing Foundations and CAD/CAM Applications, Austin, TX, June 5-7, 1991.
    8. Cox, J., Ferguson, H. R. P., Kohkonen, K., “Single Domain Methods For Modeling Objects In The Round For Engineering And Manufacturing Applications”, Advances in Design Automation, ASME Design Automation Conference, Orlando, FL, Sept. 25-28, 1988.
    9. Epstein, D.B.A., J.W.Cannon, D.F.Holt, F.V.F. Levi, M.S.Paterson, W.P.Thurston, Word Processing in Groups, jones and Bartlett, Boston, 1992.
    10. Farin, G. E., Curves and surfaces for Computer Aided Geometric Design, Academic Press Inc., Boston, 1988.
    11. Ferguson, H., “Umbilic Torus NC,” SIGGRAPH’89 Art Show, Boston, Mass., Leonardo, Journal of the International Society for the Arts, Sciences and Technology, Supplemental Issue, August 1989, page 117, 122.
    12. Ferguson, H., Two Theorems, Two Sculptures, Two Posters, American Mathematical Monthly, Volume 97, Number 7, August-September 1990, pages 589 – 610.
    13. Ferguson, H., “Algorithms for Scientific Visualization,” Supercomputing Research Center Tech. report SRC-92-xxx, 1992.
    14. Firby, P. and C. Gardiner, Surface Topology, John Wylie & Sons, New York, 1982.
    15. Ford, L R., Automorptffc Functions, Chelsea, Hew York 1951.
    16. Hoffmann, C., Geometric Modeling, Morgen Kaufman, New York, 1990.
    17. Lapidus, L., Pinder, G. F., Numerical Solutions of Partial Differential Equations in Science and Engineering, John Wiley & Sons, New York, 1982.
    18. Martin, G. E., The Foundations of Geometry and the Non-Euclidean Plane, Springer-Verlag, New York, Second Printing, 1986.
    19. Rockwood, Alyn, “The (5,3) Toroidal Knot,” SIGGRAPH86 Art Show Catalog,August,1986.
    20. Siegel, C.L., Topics in Complex Function Theory, vol.l: “Elliptic Functions and Uniformization Theory’; vol.2, “Automorphic Functions and Abelian Integrals”, Wylie Interscience, New York, 1988


ACM Digital Library Publication: