“SubEdit: a representation for editing measured heterogeneous subsurface scattering” by Song, Tong, Pellacini and Peers

  • ©Ying Song, Xin Tong, Fabio Pellacini, and Pieter Peers




    SubEdit: a representation for editing measured heterogeneous subsurface scattering



    In this paper we present SubEdit, a representation for editing the BSSRDF of heterogeneous subsurface scattering acquired from real-world samples. Directly editing measured raw data is difficult due to the non-local impact of heterogeneous subsurface scattering on the appearance. Our SubEdit representation decouples these non-local effects into the product of two local scattering profiles defined at respectively the incident and outgoing surface locations. This allows users to directly manipulate the appearance of single surface locations and to robustly make selections. To further facilitate editing, we reparameterize the scattering profiles into the local appearance concepts of albedo, scattering range, and profile shape. Our method preserves the visual quality of the measured material after editing by maintaining the consistency of subsurface transport for all edits. SubEdit fits measured data well while remaining efficient enough to support interactive rendering and manipulation. We illustrate the suitability of SubEdit as a representation for editing by applying various complex modifications on a wide variety of measured heterogeneous subsurface scattering materials.


    1. An, X., and Pellacini, F. 2008. AppProp: all-pairs appearance-space edit propagation. ACM Trans. Graph., Vol. 27, No. 3, 40:1–40:10. Google ScholarDigital Library
    2. Chen, Y., Tong, X., Wang, J., Lin, S., Guo, B., and Shum, H.-Y. 2004. Shell texture functions. ACM Trans. Graph., Vol. 23, No. 3, 343–353. Google ScholarDigital Library
    3. Donner, C., Weyrich, T., d’Eon, E., Ramamoorthi, R., and Rusinkiewicz, S. 2008. A Layered, Heterogeneous Reflectance Model for Acquiring and Rendering Human Skin. ACM Trans. Graph., Vol. 27, No. 5, 140. Google ScholarDigital Library
    4. Fuchs, C., Goesele, M., Chen, T., and Seidel, H.-P. 2005. An Empirical Model for Heterogeneous Translucent Objects. In ACM SIGGRAPH Sketches. Google ScholarDigital Library
    5. Gangnet, M., and Blake, A. 2003. Poisson image editing. ACM Trans. Graph., Vol. 22, No. 3, 313–318. Google ScholarDigital Library
    6. Ghosh, A., Hawkins, T., Peers, P., Frederiksen, S., and Debevec, P. 2008. Practical Modeling and Acquisition of Layered Facial Reflectance. ACM Trans. Graph., Vol. 27, No. 5, 139. Google ScholarDigital Library
    7. Goesele, M., Lensch, H. P. A., Lang, J., Fuchs, C., and Seidel, H.-P. 2004. DISCO: acquisition of translucent objects. ACM Trans. Graph., Vol. 23, No. 3, 835–844. Google ScholarDigital Library
    8. Jensen, H. W., and Buhler, J. 2002. A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graph., Vol. 21, No. 3, 576–581. Google ScholarDigital Library
    9. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proc. ACM SIGGRAPH, 511–518. Google ScholarDigital Library
    10. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse Shade Trees for Non-Parametric Material Representation and Editing. ACM Trans. Graph., Vol. 25, No. 3. Google ScholarDigital Library
    11. Lensch, H. P. A., Goesele, M., Bekaert, P., Magnor, J. K. M. A., Lang, J., and Seidel, H.-P. 2003. Interactive Rendering of Translucent Objects. Computer Graphics Forum, Vol. 22, No. 2, 195–205.Google ScholarCross Ref
    12. Lischinski, D., Farbman, Z., Uyttendaele, M., and Szeliski, R. 2006. Interactive local adjustment of tonal values. In ACM Trans. Graph., 646–653. Google ScholarDigital Library
    13. Ng, R., Ramamoorthi, R., and Hanrahan, P. 2003. Allfrequency shadows using non-linear wavelet lighting approximation. ACM Trans. Graph., Vol. 22, No. 3, 376–381. Google ScholarDigital Library
    14. Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. 1977. Geometrical Considerations and Nomenclature for Reflectance. National Bureau of Standards (US).Google Scholar
    15. Peers, P., vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., and Dutré, P. 2006. A compact factored representation of heterogeneous subsurface scattering. ACM Trans. Graph., Vol. 25, No. 3, 746–753. Google ScholarDigital Library
    16. Pellacini, F., and Lawrence, J. 2007. AppWand: editing measured materials using appearance-driven optimization. ACM Trans. Graph., Vol. 26, No. 3, 54. Google ScholarDigital Library
    17. Press, W. H., et al. 1992. Numerical Recipes in C (Second Edition). Cambridge University Press. Google ScholarDigital Library
    18. Tariq, S., Gardner, A., Llamas, I., Jones, A., Debevec, P., and Turk, G. 2006. Efficiently Estimation of Spatially Varying Subsurface Scattering Parameters. In 11th Int’l Fall Workshop on Vision, Modeling, and Visualzation 2006, 165–174.Google Scholar
    19. Tong, X., Wang, J., Lin, S., Guo, B., and Shum, H.-Y. 2005. Modeling and rendering of quasi-homogeneous materials. ACM Trans. Graph., Vol. 24, No. 3, 1054–1061. Google ScholarDigital Library
    20. Wang, R., Tran, J., and Luebke, D. 2005. All-Frequency Interactive Relighting of Translucent Objects with Single and Multiple Scattering. ACM Trans. Graph., Vol. 24, No. 3, 1202–1207. Google ScholarDigital Library
    21. Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y., Guo, B., and Shum, H.-Y. 2008. Modeling and rendering of heterogeneous translucent materials using the diffusion equation. ACM Trans. Graph., Vol. 27, No. 1, 9:1–9:18. Google ScholarDigital Library
    22. Wang, R., Cheslack-Postava, E., Luebke, D., Chen, Q., Hua, W., Peng, Q., and Bao, H. 2008. Real-time editing and relighting of homogeneous translucent materials. The Visual Computer, Vol. 24, 565–575(11). Google ScholarDigital Library
    23. Weyrich, T., Matusik, W., Pfister, H., Bickel, B., Donner, C., Tu, C., McAndless, J., Lee, J., Ngan, A., Jensen, H. W., and Gross, M. 2006. Analysis of human faces using a measurement-based skin reflectance model. ACM Trans. Graph., Vol. 25, No. 3, 1013–1024. Google ScholarDigital Library
    24. Xu, K., Gao, Y., Li, Y., Ju, T., and Hu, S.-M. 2007. Real-time homogenous translucent material editing. Computer Graphics Forum, Vol. 26, No. 3, 545–552.Google ScholarCross Ref

ACM Digital Library Publication:

Overview Page: