“Stripe patterns on surfaces” by Knöppel, Crane, Pinkall and Schröder
Conference:
Type(s):
Title:
- Stripe patterns on surfaces
Session/Category Title: Geometry Field Trip
Presenter(s)/Author(s):
Abstract:
Stripe patterns are ubiquitous in nature, describing macroscopic phenomena such as stripes on plants and animals, down to material impurities on the atomic scale. We propose a method for synthesizing stripe patterns on triangulated surfaces, where singularities are automatically inserted in order to achieve user-specified orientation and line spacing. Patterns are characterized as global minimizers of a convex-quadratic energy which is well-defined in the smooth setting. Computation amounts to finding the principal eigenvector of a symmetric positive-definite matrix with the same sparsity as the standard graph Laplacian. The resulting patterns are globally continuous, and can be applied to a variety of tasks in design and texture synthesis.
References:
1. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-Integer Quadrangulation. ACM Trans. Graph. 28, 3. Google ScholarDigital Library
2. Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S. 2008. CHOLMOD, Supernodal Sparse Cholesky Factorization, and Update/Downdate. ACM Trans. Math. Softw. 35. Google ScholarDigital Library
3. Chern, A., Pinkall, U., and Schröder, P. 2015. Close-to-Conformal Deformations of Volumes. ACM Trans. Graph. 34. Google ScholarDigital Library
4. Crane, K., Desbrun, M., and Schröder, P. 2010. Trivial Connections on Discrete Surfaces. Comp. Graph. Forum 29, 5.Google ScholarCross Ref
5. Crane, K., De Goes, F., Desbrun, M., and Schröder, P. 2013. Digital Geometry Processing with Discrete Exterior Calculus. In ACM SIGGRAPH 2013 courses. Google ScholarDigital Library
6. Diamanti, O., Vaxman, A., Panozzo, D., and Sorkine-Hornung, O. 2014. Designing N-PolyVector Fields with Complex Polynomials. Comp. Graph. Forum 33, 5. Google ScholarDigital Library
7. Fisher, M., Schröder, P., Desbrun, M., and Hoppe, H. 2007. Design of Tangent Vector Fields. ACM Trans. Graph. 26, 3. Google ScholarDigital Library
8. Hertzmann, A., and Zorin, D. 2000. Illustrating Smooth Surfaces. Proc. ACM/SIGGRAPH Conf. Google ScholarDigital Library
9. Jobard, B., and Lefer, W. 1997. Creating Evenly-Spaced Streamlines of Arbitrary Density. In Vis. Sci. Comp., W. Lefer and M. Grave, Eds.Google Scholar
10. Kälberer, F., Nieser, M., and Polthier, K. 2007. QuadCover: Surface Parameterization using Branched Coverings. Comp. Graph. Forum 26, 3.Google ScholarCross Ref
11. Kälberer, F., Nieser, M., and Polthier, K. 2010. Stripe Parameterization of Tubular Surfaces. Top. Meth. Data Anal. Vis.Google Scholar
12. Kalpakjian, S., and Schmid, S. R. 2009. Manufacturing Engineering and Technology, 6th Ed. Prentice Hall, New York.Google Scholar
13. Knöppel, F., Crane, K., Pinkall, U., and Schröder, P. 2013. Globally Optimal Direction Fields. ACM Trans. Graph. 32, 4. Google ScholarDigital Library
14. Lefebvre, S., and Hoppe, H. 2006. Appearance-Space Texture Synthesis. ACM Trans. Graph. 25, 3. Google ScholarDigital Library
15. Ling, R., Huang, J., Jüttler, B., Sun, F., Bao, H., and Wang, W. 2014. Spectral Quadrangulation with Feature Curve Alignment and Element Size Control. ACM Trans. Graph. 34, 1. Google ScholarDigital Library
16. MacNeal, R. 1949. The Solution of Partial Differential Equations by means of Electrical Networks. PhD thesis, Caltech.Google Scholar
17. Mebarki, A., Alliez, P., and Devillers, O. 2005. Farthest Point Seeding for Efficient Placement of Streamlines. Proc. IEEE Vis.Google Scholar
18. Mullen, P., Tong, Y., Alliez, P., and Desbrun, M. 2008. Spectral Conformal Parameterization. In Proc. Symp. Geom. Proc. Google ScholarDigital Library
19. Myles, A., and Zorin, D. 2012. Global Parameterization by Incremental Flattening. ACM Trans. Graph. 31, 4. Google ScholarDigital Library
20. Myles, A., and Zorin, D. 2013. Controlled-Distortion Constrained Global Parameterization. ACM Trans. Graph. 32, 4. Google ScholarDigital Library
21. Palacios, J., and Zhang, E. 2007. Rotational Symmetry Field Design on Surfaces. ACM Trans. Graph. 26, 3. Google ScholarDigital Library
22. Praun, E., Finkelstein, A., and Hoppe, H. 2000. Lapped Textures. In Proc. ACM/SIGGRAPH Conf. Google ScholarDigital Library
23. Ray, N., Li, W. C., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic Global Parameterization. ACM Trans. Graph. 25, 4. Google ScholarDigital Library
24. Ray, N., Vallet, B., Li, W. C., and Lévy, B. 2008. N-Symmetry Direction Field Design. ACM Trans. Graph. 27, 2. Google ScholarDigital Library
25. Rost, R. J. 2005. OpenGL(R) Shading Language (2nd Edition). Addison-Wesley Professional. Google ScholarDigital Library
26. Spencer, B., Laramee, R. S., Chen, G., and Zhang, E. 2009. Evenly Spaced Streamlines for Surfaces: An Image-Based Approach. Comp. Graph. Forum 28, 6.Google ScholarCross Ref
27. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing Quadrangulations with Discrete Harmonic Forms. In Proc. Symp. Geom. Proc. Google ScholarDigital Library
28. Turk, G. 1991. Generating Textures on Arbitrary Surfaces using Reaction Diffusion. Proc. ACM/SIGGRAPH Conf. Google ScholarDigital Library
29. Turk, G. 2001. Texture Synthesis on Surfaces. In Proc. ACM/SIGGRAPH Conf. Google ScholarDigital Library
30. Wei, L.-Y., and Levoy, M. 2001. Texture Synthesis over Arbitrary Manifold Surfaces. In Proc. ACM/SIGGRAPH Conf. Google ScholarDigital Library
31. Weissmann, S., Pinkall, U., and Schröder, P. 2014. Smoke Rings from Smoke. ACM Trans. Graph. 33, 4. Google ScholarDigital Library
32. Witkin, A., and Kass, M. 1991. Reaction-Diffusion Textures. Proc. ACM/SIGGRAPH Conf. Google ScholarDigital Library
33. Ying, L., Hertzmann, A., Biermann, H., and Zorin, D. 2001. Texture and Shape Synthesis on Surfaces. Proc. EG W. Rend. Google ScholarDigital Library
34. Zhang, M., Huang, J., Liu, X., and Bao, H. 2010. Wave-Based Anisotropic Quadrangulation. ACM Trans. Graph. 29, 4. Google ScholarDigital Library